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Резюме. Традиционный подход к моделированию человеческого мозга предполагает использование 
современных вычислительных устройств с последовательным наращиванием их мощностей до допу-
стимого уровня. Альтернативой ему служит гибридное решение, основывающееся на концепции ней-
роморфных вычислений и представляющее собой комбинацию искусственных нейронных сетей, рабо-
тающих на специально сконструированных для задачи аппаратных решениях. Особенности конструк-
ции предполагают воспроизведение механизмов работы человеческого мозга, а созданные на их осно-
ве вычислительные устройства обеспечивают поддержку работы нейронных сетей. Существующие вы-
числительные модели мозга требуют значительного времени на обработку данных даже при запуске 
на суперкомпьютерах и в настоящее время не способны работать в режиме реального времени. По-
скольку человеческий мозг состоит из двух полушарий, работающих и выполняющих разные функ-
ции, подход на основе комбинирования аналоговых и цифровых систем в единое архитектурное ре-
шение выглядит перспективно. Описанию результатов исследований человеческого мозга и его актив-
ности как основы для построения гибридных вычислительных систем и методам работы с ними и по-
священа данная работа.

Ключевые слова: нейроинформатика, вычислительная нейробиология, высокопроизводительные вы-
числения, моделирование человеческого мозга.

Hybrid approaches and human brain activity modelling

Bogdanov A.V.1, Gushchanskiy D.E.1, Degtyarev A.B.1, Lysov K.A.1, Ananyeva N.I.2, Neznanov N.G.2, Zalutskaya N.M.2,
1 St. Petersburg University

2 St.Petersburg V.M. Bekhterev Psychoneurological Research Institute

Summary. The traditional approach to human brain modeling suggests modification of modern systems and 
microcircuits as long as their performance reaches a permissible limit. A different hybrid approach is based 
on neuromorphic computing. The idea we utilize is combination of artificial neural networks with specialized 
microcircuits. The architecture of the microchip needs to reproduce the mechanisms of the human brain 
and to be a kind of hardware support for neural networks. Existing models of the brain even on powerful 
supercomputers require significant computation time and are not yet able to solve problems in real time. 
Since the human brain consists of two parts with different functions and different data processing principles, 
there is a very promising approach which suggests combining digital and analog systems into single one. In 
current collaboration we incorporate some results of study of activity of human brain as a base of building 
of hybrid computational system and foundation to the approach of running it.
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До недавнего времени одним из крупнейших 
споров нейробиологии велся вокруг того, 
как нейроны кодируют информацию. Было 

неясно, посылается ли информация в цифровой 
или аналоговой форме, либо мозг использует оба 
средства одновременно. Оказалось, что оба [1]. 
Открытыми остаются следующие вопросы:

1.	 Как классифицировать сигнал (в качестве 
дискретного или аналогового)?

2.	 Как определить, какую информацию он не-
сет (провести декодирование)?

На данный момент нет единого мнения, как 
интерпретировать информацию при декодирова-
нии. Большинство ученых разделилось на привер-
женцев частотного кодирования (rate coding) [2] и 
приверженцев временного кодирования (temporal 
coding) [3]. Частотное кодирование подразумева-
ет, что сигнал всегда несет какую-нибудь инфор-

мацию и ее интерпретация зависит только от ча-
стоты сигнала. Временное же кодирование пред-
полагает, что в любой момент времени сигнал мо-
жет являться либо шумом, либо некоторой ин-
формацией, требующей интерпретации. В дан-
ной работе нас больше интересовало, как сигна-
лы классифицировать в качестве аналоговых или 
цифровых, чтобы заложить основу для формиро-
вания гетерогенного вычислительного комплек-
са, где одна составляющая генерирует аналого-
вые сигналы, а другая — цифровые.

Цифровые сигналы, передаваемые обычными 
компьютерами, нисколько не похожи на аналого-
вые сигналы, применяемые в старых телевизорах 
и радиоприемниках. Отличить их друг от друга 
просто, чего нельзя сказать того же о нейронных 
сигналах — там разделить цифровые и аналоговые 
сигналы довольно сложно. Нейробиологам давно 
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известно, что нейроны передают сигналы в фор-
ме электрических импульсов, которые называют-
ся биоэлектрическими потенциалами или «спай-
ками». Несколько взятых вместе спайков называ-
ется последовательностью спайков. Точный спо-
соб кодирования информации в спайках неизве-
стен, однако ученые открыли как минимум два 
протокола кодирования. В 1990 году нейробио-
логи обнаружили, что напряжение мышцы зави-
сит от количества «спайков» в определенный пе-
риод времени, от скорости их прибывания. Этот 
вид сигнала имеет лишь два состояния — включе-
но или выключено — так что он определенно яв-
ляется цифровым. Однако другие нейробиологи 
утверждают, что информация может быть зако-
дирована и по-другому — посредством разницы 
во времени между отдельными спайками при их 
прибытии. Это аналоговое кодирование.

Сложность заключается в разграничении этих 
двух сигналов, поскольку они оба зависят от ха-
рактеристики спайков, которые путешествуют по 
нейрону. Этот вопрос вызывает частые споры 
среди нейробиологов, поскольку отсутствует со-
гласия относительно того, когда сигнал является 
цифровым, а когда аналоговым.

Не так давно японские физики Ясухиро Мо-
тидзуки (Yasuhiro Mochizuki) и Сигеру Синомото 
(Shigeru Shinomoto) из Университета Киото разра-
ботали способ автоматического определения вида 
кодирования [6]. Способ основан на идее о том, 
что некоторые статистические модели лучше вы-

ражают цифровой код, чем аналоговый код, и на-
оборот.

Метод довольно прямолинеен. Ученые анали-
зируют сигнал нейрона и затем стараются повто-
рить его сначала с помощью эмпирической бай-
есовской модели, а затем — с помощью скрытой 
марковской модели. Далее на основе модели, кото-
рая лучше отражает характеристики первоначаль-
ного сигнала, они определяют, является ли сиг-
нал аналоговым или цифровым. Получается, что 
если эмпирическая байесовская модель лучше от-
ражает сигнал, тогда сигнал, вероятно, аналого-
вый, если же скрытая марковская модель подхо-
дит лучше, тогда сигнал, скорее всего, цифровой 
(рис. 3) [6].

Данный подход был проверен на сигналах, ко-
торые возникали в разных частях мозга длин-
нохвостых макак, и подтвердил, что разные ча-
сти мозга используют разные формы кодирова-
ния. Это дает повод проверить на практике об-
ратную ситуацию, когда будет построена система, 
комбинирующая аналоговые и цифровые сигналы 
для генерации нейронных спайков.

Резистивные процессорные устройства

В последние годы в рамках DARPA SyNAPSE 
[4] и Human Brain Project [5] был разработан ряд 
нейроморфных (грубо повторяющих структуру 
нейронов и синапсов в мозгу человека) архитек-
тур, реализующих концепцию резистивных про-

Рис. 3. (а) Последовательность спайков, сгенерированная с помощью процесса Орнштейна-Уленбека (Ornstein-
Uhlenbeck Process) (синий). Эмпирическая байесовская модель (зеленый) лучше аппроксимирует сигнал, чем скры-

тая марковская модель (оранжевый). (б) Последовательность спайков, полученная с помощью процесса переключе-
ния состояния (Switching State process) (красный). Скрытая марковская модель лучше аппроксимирует сигнал, 

чем эмпирическая байесовская модель
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цессорных устройств (Resistive Processing Unit, 
RPU) [7]. RPU — вычислительный элемент, анало-
говый по своей природе, небольшой по размерам 
и способный восстанавливать свою историю, что-
бы обучаться. Он получает множество аналоговых 
данных, в форме напряжений, и на основе про-
шлого опыта использует взвешенную функцию из 
них, чтобы решить, какой результат передавать на 
следующий слой вычислительных элементов. Си-
напсы имеют озадачивающее и пока неполностью 
понятное положение в мозге человека, но чипы из 
RPU организованы в двумерные массивы.

Одно ядро IBM Power8 CPU может достичь 
пиковой производительности порядка 50 гигаф-
лопс, чего должно быть достаточно для поддерж-
ки одного тайла RPU. Однако, предельная мощ-
ность будет достигнута уже при 12 тайлах при 
расходе 20 Ватт на одно ядро. Энергоэффектив-
ность этого решения (Архитектура 1 в табл. 1) 
будет равняться 20 тераопс/Ватт. Аналогичные 
вычислительные ресурсы могут быть обеспече-
ны 32 ядрами GPU, но с большей энергоэффек-
тивностью, позволяя тем самым параллельную 
работу до 50 тайлов. Энергоэффективность тако-
го решения (Архитектура 2 в таблице 1) оцени-
вается как 84 тераопс/Ватт. Дальнейшее увеличе-
ние числа тайлов, способных работать параллель-
но, может быть осуществлено посредством созда-
ния энергоэффективных цифровых микросхем с 
минимальной занимаемой площадью, оперирую-
щих числами с плавающей точкой с ограничен-
ным битовым разрешением. Альтернативный под-
ход (Архитектура 3 в таблице 1) может быть осно-
ван на нескольких вычислительных ядрах, обраба-
тывающих данные тайлы последовательно. После-
довательная обработка необходима для поддерж-
ки большего числа тайлов, что, в свою очередь, 
позволяет работать с сетями большего размера. 
Например, микросхема с 100 тайлами и одно вы-
числительное ядро с производительностью 50 ги-
гаопс будут способны работать с сетью, содержа-
щей более чем 1.6 миллиарда весов, потребляя 
при этом около 22 Ватт — 20 Ватт на поддержку 
работы процессора и передачу данных по шине, 
а остальные 2 Ватт — на блок RPU, поскольку в 
один момент времени будет активен только один 
тайл. Это дает энергоэффективность порядка 20 
тераопс/Ватт, что на 4 порядка лучше, чем CPU 
и GPU.

Для глубоких нейронных сетей, содержащих 
более миллиарда весов, архитектура RPU с массо-
вым параллелизмом может достигать 30000-крат-
ного ускорения по сравнению с высокоэффек-
тивными микропроцессорами, обладая при этом 
энергоэффективностью в 84000 гигаопс/Ватт. За-
дачи, требующие многодневной тренировки сети 
на кластерах с тысячами машин, могут быть раз-
решены за часы с использованием только одно-
го RPU-ускорителя. Система из нескольких RPU-
ускорителей будет способна обрабатывать задачи 
«Больших Данных» с триллионами параметров, 
которые невозможно успешно решать на совре-
менной технике. К таким задачам, например, от-
носятся распознавание речи с одновременным пе-
реводом на мировые языки, анализ в реальном 
времени больших потоков научных или финан-
совых данных, интеграция и анализ разнородных 
потоков данных, снятых с сенсоров значительно-
го количества устройств IoT (Internet of Things, 
Интернет Вещей).

Из-за того, что RPU специализированы и не 
требуют преобразования аналоговой информа-
ции в цифровую или доступа к какой-либо па-
мяти, кроме своей собственной, они могут быть 
быстры и поглощать мало энергии. Поэтому, те-
оретически, сложная нейронная сеть может быть 
напрямую смоделирована путем выделения одно-
го RPU к одному программному нейрону. К сожа-
лению, RPU неточен из-за своей аналоговой при-
роды и обилия шума в схемах, поэтому алгоритм 
должен иметь устойчивость к «врожденным» не-
точностям в RPU.

Программирование

Нейрокомпьютер NS16e работает с нейронны-
ми сетями в режиме реального времени. Для ра-
боты он соединяется с сервером на основе архи-
тектуры x86 (цифровой подсистемой) через шину 
PCI Express (рис. 4). Сервер может загружать на 
нейрокомпьютер и выгружать с него большие 
объемы данных. При наличии на сервере GPU 
он может тренировать нейронные сети большого 
объема, которые сразу же могут быть запущены 
на NS16e. Процесс тонко настраивается: измене-
ния можно вносить в рамках подготовки трени-
ровочных данных, механизма обучения сети, ее 
оптимизации под конкретное аппаратное обеспе-

Таблица 1. Сравнение CPU Power8, Nvidia Tesla K40 и различных архитектур систем RPU.

Система
Производи-
тельность, 

тераопс

Энерго-
потребление, Ватт

Энерго-
эффективность, 

гигаопс/Ватт

Размер сети, 
число весов

Коэффициент 
ускорения (по 

сравнению с CPU)
CPU Power8 12 ядер 0.676 250 2.7 - 1

GPU NVidia Tesla K40 4.3 242 17.8 - 6.4

Архитектура 1 5000 250 20100 200 млн. 7400

Архитектура 2 21000 250 83800 840 млн. 31000

Архитектура 3 420 22 19000 1680 млн. 620
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чение. При этом весь процесс может быть запу-
щен одной командой.

Базовые вычисления проводятся на масси-
ве 4x4 TrueNorth плат, взаимодействующих друг 
с другом посредством асинхронного протокола 
без использования дополнительных интерфейс-
ных плат.

Через PCI Express сервер может собирать и от-
правлять данные со скоростью 500Мб/с. Микро-
схемы ППВМ на NS16e служат в роли моста меж-
ду сервером и аппаратными нейронными схема-
ми, таким образом выступая в роли переводчи-
ка между фон-неймановской и нейронной архи-
тектурами, оперирующими разными понятиями. 
Компьютер на основе архитектуры фон Неймана 
оперирует инструкциями и бинарными данными, 
в то время как нейронная архитектура — пиковы-
ми сигналами между нейронами. При вводе ко-
манды сервер отправляет нейронную модель че-
рез шину и загружает ее на микросхемы NS16e. 
В терминале на сервере можно следить за про-
цессом загрузки, а после, при проведении спай-
ки нейронов — и за тем, как много генерируется 
спайков и как обновляются нейроны.

Часть нашего мозга отвечает за восприятие, 
в то время как остальная часть — за моторные 
функции. Подобного разбиения можно достичь и 
в нейрокомпьютерах: отдельной микросхеме мож-
но сопоставить для обработки конкретный уча-
стой нейронной сети. Например, каждой микро-
схеме можно сопоставить слой нейронной сети, 
или набор слоев, ответственных за распознавание 
конкретного фрагмента. Работа с этой особенно-
стью называется задачей размещения ядра (core 
placement problem) [8]. В общем случае, в нее вхо-

дят попытки перенести ядра в наилучшее с точ-
ки зрения топологии место, чтобы повысить вну-
треннюю скорость передачи данных внутри си-
стемы, строящейся из сетей на чипах. Из-за этой 
особенности две идентичные сети могут работать 
с разной скоростью, поскольку, например, одна из 
них использует передачу информации внутри ми-
кросхемы, а другая передает ту же информацию 
между микросхемами.

Написание программ для NS16e осуществляет-
ся посредством интегрированной системы и вхо-
дящими в нее утилитами разработки — DevKit. В 
программировании для нейрокомпьютера можно 
выделить три ключевых этапа:

1. Анализ данных и предобработка. Входные 
данные конвертируются в стандартный формат, 
понятный всем средствам разработки, и транс-
формируются в наборы признаков. Данные реко-
мендуется размещать в Lighting Memory-Mapped 
Database (LMDB) [9], высокопроизводительной 
встроенной транзакционной базе данных фор-
мата «ключ-значение». Данный формат популя-
рен в среде глубокого машинного обучения, по-
скольку быстрота чтения данных LMDB позволя-
ет быстро переносить их на GPU для обработки. 
Для импорта и предобработки данных существу-
ет консольная утилита tn-signal-processor, напи-
санная на языке программирования C++. Она 
способна импортировать JPG и PNG файлы в 
LMDB и применять к ним различные преобра-
зования: кадрирование, вращение, фильтрация, 
кодирование и декодирование в пики, визуали-
зация и другие.

2. Обучение. Обучение строится на предва-
рительно подготовленных и отформатированных 
данных. Сверточные сети TrueNorth (TrueNorth 
Convolutional Networks, TNCN) [10] — это инстру-
ментарий для создания и обучения нейронных се-
тей, удовлетворяющих архитектурным особенно-
стям TrueNorth. Использование программной сре-
ды Corelet Programming Environment (CPE) вместе 
с TNCN освобождает программиста от части ра-
боты с абстракциями: последовательностями сло-
ев, размерами фильтров, точностью данных и т.п.

3. Сопоставление логических ядер файла моде-
ли и физического массива микрочипов в нейро-
компьютере. В случае системы с несколькими схе-
мами задача приобретает нетривиальный харак-
тер, поскольку передача данных между элемента-
ми может критически ограничить производитель-
ность аппаратной платформы.

Для эвристического размещения логических 
ядер файла модели на физическую архитектуру 
используется утилита Neuro Synaptic Core Placer 
(NSCP). Она минимизирует пересечения микро-
схем в ядре графа связности. Идентификация 
биологических нейронных сетей осуществляется 
посредством анализа функциональной магнитно-
резонансной томографии (фМРТ), в основе кото-
рой лежит оксигенация синхронного сигнала ак-
тивации (BOLD-сигнал) в определенных обла-
стях мозга в состоянии покоя и при предъявле-
нии определенных парадигм [11].

Рис. 4. Схема вычислительной системы  
на основе нейрокомпьютера



ОБОЗРЕНИЕ ПСИХИАТРИИ И МЕДИЦИНСКОЙ ПСИХОЛОГИИ № 1, 2017

23

Исследования

Результаты

При анализе данных фМРТ состояния покоя 
(fMRI resting state) в системе SPM 12.0 c последу-
ющим анализом методом независимых компонен-
тов было выбрано 8.нейрональных сетей. По срав-
нению с остальными эти компоненты давали яр-
кое визуальное синхронной для каждой сети ото-
бражение основных биологических нейронных се-
тей. Они идентифицируются как:

1) левая передняя теменная, левая боковая, ле-
вая нейронная сеть «рабочая память», левая ней-
ронная сеть «внимание»;

2) правая передняя теменная, правая боковая 
нейронная сеть, правая нейронная сеть «рабочая 
память», правая нейронная сеть «внимание»;

3) спинная передняя временная нейронная 
сеть, нейронная сеть «осуществление управле-
ния»;

4) передняя теменная вентральная нейронная 
сеть, языковая нейронная сеть;

5) визуальная нейронная сеть;
6) слуховая нейронная сеть;
7) сенсорная моторная нейронная сеть;
8) нейронная сеть «по умолчанию» [12].
Далее проводился сравнительный анализ труд-

ности функциональной связности для ключевых 
узлов «стандартных» биологических нейронных 
сетей. Анализ показывает нарушение структуры 
и синхронности операций в нейронной сети «по 
умолчанию» (№ 8) у пациентов с аффективными 
и когнитивными нарушениями при ряде заболе-
ваний мозга (рис. 5) [13].

К примеру, в сравнении со здоровыми добро-
вольцами схожего возраста и пола, у пациентов 
с депрессией в сочетании с когнитивными на-

Рис. 5. Сеть в состоянии покоя

Рис. 6. МРТ пациента с депрессией и когнитивными  
нарушениями

Рис. 7. МРТ здорового человека

рушениями было найдено изменение в работе 
нейронной сети (рис. 6, 7). Компьютерное мо-
делирование мозговой активности предоставля-
ет возможность оценки влияния ошибок на ре-
зультаты исследований, ограничивая на их осно-
ве потенциальные парадигмы оперирования  
модели.

Исследования переноса возбуждения в челове-
ческом мозге делают возможным использование 



ОБОЗРЕНИЕ ПСИХИАТРИИ И МЕДИЦИНСКОЙ ПСИХОЛОГИИ № 1, 2017

24

Исследования

реальных биологических данных для выработки 
набора команд и подготовки сценариев работы 
систем, спроектированных по виду, представлен-
ному на рис. 4.

Заключение

Интеграция цифровых и аналоговых подсистем 
в единый вычислительный комплекс представля-
лась сложной задачей из-за значительной разни-
цы в скорости работы цифровых и аналоговых 
устройств. Ситуация радикально изменилась с 
релизом компанией IBM ряда продуктов — от вы-
числительных чипов до программного обеспече-
ния — направленных на разработку нейрокомпью-
теров. Технологии IBM позволили увеличить ско-
рость нейрокомпьютеров и соединять их с циф-
ровыми системами. Особое внимание в дальней-

ших исследованиях следует уделять возможности 
вычислительных объединения ресурсов с разноо-
бразнейшими характеристиками в единый пул, а 
также их интеграции в гибридные распределен-
ные среды многопоточных процессоров.

В рамках данной совместной работы были по-
казаны результаты исследований активности че-
ловеческого мозга в качестве основы для постро-
ения гибридных вычислительных систем и осно-
вы для метода работы с ними.
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