Preview

V.M. BEKHTEREV REVIEW OF PSYCHIATRY AND MEDICAL PSYCHOLOGY

Advanced search

Vascular endotelial dysfunction is a pathogenetic factor in the development of neurodegenerative diseases and cognitive impairment

https://doi.org/10.31363/2313-7053-2020-3-11-26

Abstract

The amount of publications devoted to the endothelial cells, on the one hand, and neurological diseases, on the other hand, has been growing rapidly in recent years. Nevertheless, the relationship between the endothelial monolayer and the cells of the nervous system remains poorly studied. This review presents the available information about endothelial markers, molecular and cellular mechanisms for maintaining the integrity of the endothelial monolayer and the violations in some acute and chronic neuropsychiatric diseases. At the molecular level, the most important pathogenetic link in endothelial dysfunction is an imbalance of Ca2+ ions, which is associated with redox imbalance in the cells and increased generation of reactive oxygen species. Genetic and epigenetic factors that cause these disorders and their cause-and-effect relationships are considered. Of the genetic diseases, the most studied are monogenic diseases associated with impaired blood-brain barrier integrity: this is a deficiency of protein molecules that ensure glucose transport, structural and functional integrity of tight junctions and the basement membrane of endothelial cells themselves, as well as mutations in pericytes and smooth muscle cells. Mutations that increase the risk of developing known neurodegenerative diseases, but are also the cause of cerebrovascular pathology, are less studied. The small vessel diseases constitute a whole group of primarily epigenetically caused diseases, the clinical consequence of which is often vascular dementia. Special attention is paid to one of the least studied problems—the pathogenesis of toxicological diseases that occur at different times after acute and chronic organophosphate poisoning. Microangiopathies caused by damage to the endothelium in the central and peripheral nervous systems can be the main cause for the development of delayed effects in organophosphate poisoning. In the absence of effective therapies for neurodegenerative diseases, more and more evidence is emerging about the positive impact of the nutritional structure and healthy lifestyle on the state of blood vessels and the risk of developing these diseases.

About the Authors

N. V. Goncharov
Research Institute of Hygiene, Occupational Pathology and Human Ecology; Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Russian Federation

Leningrad Region,

St.Petersburg


P. I. Popova
City Policlinic №19
Russian Federation
St.Petersburg


A. S. Golovkin
Almazov National Medical Research Centre
Russian Federation
St.Petersburg


N. M. Zalutskaya
V.M. Bekhterev National Research Medical Center for Psychiatry and Neurology; Pavlov First Saint Petersburg State Medical University
Russian Federation
St.Petersburg


E. I. Palchikova
V.M. Bekhterev National Research Medical Center for Psychiatry and Neurology
Russian Federation
St.Petersburg


K. V. Zanin
V.M. Bekhterev National Research Medical Center for Psychiatry and Neurology
Russian Federation

St.Petersburg



Р. V. Avdonin
Koltzov Institute of Developmental Biology, Russian Academy of Sciences
Russian Federation
Moscow


References

1. Goncharov NV, Popova PI, Avdonin PP, Kudryavtsev IV, Serebryakova MK, Korf EA, Avdonin PV. Endothelial Markers in Health and Disease. Biologicheskie Membrany. 2020; 37(1):3-21 (In Russ.).

2. Kovrazhkina EA. Axonal polyneuropathies: pathogenesis and treatment. Zhurnal nevrologii i psihiatriiim. S.S. Korsakova. 2013; 113(6):22-25 (In Russ.).

3. Kudryvtsev IV, Garnyuk VV, Goncharov NV, Nadeev AD. Hydrogen peroxide modulates expression of surface antigens by human umbilical vein endothelial cells in vitro. Biologicheskie membrany. 2013; 30(5):438-444 (In Russ.).

4. Kucenko S.A. Osnovi toksicologii. SPb:Foliant; 2004:570 (In Russ.).

5. Musiychuk Yu I, Yanno LV. To the problem of the long-term effects of chemicals in humans. Gigiena truda.1988; 8:4-7 (In Russ.).

6. Nadeev AD, Zinchenko VP, Avdonon PV, Goncharov NV. Toxic and signal properties of active form of oxygen. Toksilogicheskii vestnik. 2014; 2(125):22- 27 (In Russ.).

7. Nadeev AD, Kudryavtsev IV, Serebriakova MK, Avdonin PV, Zinchenko VP, Goncharov NV. Dual Proapoptotic and pronecrotic effect of hydrogen peroxide on human umbilical vein endothelial cells. Citologia. 2015; 57(12):909-916 (In Russ.).

8. SemyachkinaGlushkovskaya OV. Lymphatic system of meningeal membranes of the brain. Sibirskoe medicinskoe obozrenie. 2017; 6:39-50 (In Russ.). doi: 10.20333/2500136-2017-6-39-50.

9. Abbott NJ. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev Neurosci. 2006;7(1):41-53.

10. Abdollahi M., Karami-Mohajeri S. A comprehensive review on experimental and clinical findings in intermediate syndrome caused by organophosphate poisoning. Toxicol. Appl. Pharmacol. 2012;258:309-314.

11. Adam AP. Regulation of endothelial adherens junctions by tyrosine phosphorylation. Mediators Inflamm.2015;2015: doi.org/10.1155/2015/272858

12. Aird WC. Endothelial cell heterogeneity. Cold Spring Harb. Perspect. 2012;2(1):doi:10.1101/cshperspect.a006429

13. Al-Chalabi A, van den Berg LH, Veldink J. Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat Rev Neurol. 2017;13:96-104.

14. Alghadir AH., Gabr SA., Al-Eisa ES. Effects of moderate aerobic exercise on cognitive abilities and redox state biomarkers in older adults. Oxid. Med. Cell. Longev. 2016. doi:10.1155/2016/2545168.

15. Arvanitakis Z, Capuano AW, Leurgans SE, Bennett DA, Schneider JA. Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: a crosssectional study. Lancet Neurol. 2016; 15(9):934- 943.

16. Augustin K, Khabbush A, Williams S, Eaton S, Orford M, Cross JH, Heales SJR2 Walker MC, Williams RSB. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol. 2018; 17(1):84-93.

17. Avdonin PV, Nadeev AD, Mironova GY, Zharkikh IL, Avdonin PP, Goncharov NV. Enhancement by Hydrogen Peroxide of Calcium Signals in Endothelial Cells Induced by 5-HT1B and 5-HT2B Receptor Agonists. Oxid Med Cell Longev. 2019:1701478–1701478.

18. Avdonin PV, Nadeev AD, Tsitrin EB, Tsitrina AA, Avdonin PP, Mironova GY, Zharkikh IL, Goncha- rov NV. Involvement of two-pore channels in hy- drogen peroxide-induced increase in the level of calcium ions in the cytoplasm of human umbili- cal vein endothelial cells. Dokl Biochem Biophys. 2017; 474(1):209-212.

19. Avdonin PV, Rybakova EY, Avdonin PP, Trufanov SK, Mironova GY, Tsitrina AA, Goncharov NV. VAS2870 Inhibits Histamine-Induced Calcium Sig- naling and vWF Secretion in Human Umbilical Vein Endothelial Cells. Cells.2019;8(2):1-12.

20. Başkaya MK, Rao AM, Doğan A, Donaldson D, Dempsey RJ The biphasic opening of the bloodbrain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett. 1997; 226:33-36.

21. Baugh CM, Robbins CA, Stern RA, McKee AC. Current understanding of chronic traumatic encephalopathy. Curr Treat Options Neurol. 2014; 16:306.

22. Camello-Almaraz C., Gomez-Pinilla PJ., Pozo MJ., Camello PJ. Mitochondrial reactive oxygen species and Ca2+ signaling. Am. J. Physiol. Cell Physiol. 2006; 291(5):1082–1088.

23. Caruso P, Signori R, Moretti R. Small vessel disease to subcortical dementia: a dynamic model, which interfaces aging, cholinergic dysregulation and the neurovascular unit. Vasc Health Risk Manag. 2019; 15:259-281.

24. Chang PA, Wu YJ. Neuropathy target esterase: an essential enzyme for neural development and axonal maintenance. J. Biochem. Cell Biol. 2010; 42:573-575.

25. Contu L, Hawkes CA. A Review of the Impact of Maternal Obesity on the Cognitive Function and Mental Health of the Offspring. J Mol Sci. 2017; 18(5): pii: E1093.

26. de Araujo Furtado M, Rossetti F, Chanda S, Yourick D. Exposure to nerve agents: from status epilepticus to neuroinflammation, brain damage, neurogenesis and epilepsy. Neurotoxicology. 2012; 33(6):1476-90.

27. Defago MD, Elorriaga N, Irazola VE, Rubinstein A.L. Influence of food patterns on endothelial biomarkers: A systematic review. Clin. Hypertens. 2020; 16(12):907–913.

28. DeLorenzo RJ, Kirmani B, Deshpande LS, Jakkampudi V, Towne AR, Waterhouse E, Garnett L, Ramakrishnan V. Comparisons of the mortality and clinical presentations of status epilepticus in private practice community and university hospital settings in Richmond, Virginia. Seizure. 2009; 18:405-411.

29. Deracinois B., Lenfant AM., Dehouck MP., Flahaut C. Tissue non-specific alkaline phosphatase (TNAP) in vessels of the brain. Subcell. Biochem. 2015; 76:125-151.

30. Durham SK. Imamura Morphogenesis of O,O,Strimethyl phosphorothioate-induced pulmonary injury in mice. Toxicol Appl Pharmacol. 1988; 96(3):417-428.

31. Ebert J, Wilgenbus P, Teiber JF, Jurk K, Schwierc- zek K, Döhrmann M, Xia N, Li H, Spiecker L, Ruf W, Horke S. Paraoxonase-2 regulates coagulation activation through endothelial tissue factor. Blood. 2018; 131(19): 2161-2172.

32. Engelhardt JI, Appel SH. IgG reactivity in the spi- nal cord and motor cortex in amyotrophic lateral sclerosis. Arch Neurol. 1990.; 47:1210-1216.

33. Garbuzova-Davis S, Hernandez-Ontiveros DG, Rodrigues MCO, Haller E, Frisina-Deyo A, Mirtyl S, Sallot S, Saporta S, Borlongan CV, Sanberg PR. Impaired blood-brain/spinal cord barrier in ALS patients. Brain Res. 2012; 1469:114-128.

34. Goncharov NV, Nadeev AD, Zharkikh IL, Jen- kins RO. Reactive oxygen species in pathogenesis of atherosclerosis. Current Pharm. Design. 2015; 21(9):1134-1146.

35. Goncharov NV., Nadeev AD., Jenkins RO., &Avdonin PV. Markers and Biomarkers of Endothelium: When Something Is Rotten in the State. Oxidative Medicine and Cellular Longevity. 2017:1-27.

36. Gustavsson AM, van Westen D, Stomrud E, Engström G, Nägga K, Hansson O. Midlife Atherosclerosis and Development of Alzheimer or Vascular Dementia. Ann Neurol. 2020; 87(1): 52-62.

37. Habgood MD, Bye N, Dziegielewska KM, Ek CJ, Lane MA, Potter A, Morganti-Kossmann C, Saunders NR Changes in blood-brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci. 2007; 25:231–238.

38. Ham JH, Yi H, Sunwoo MK, Hong JY, Sohn YH, Lee PH Cerebral microbleeds in patients with Parkinson’s disease. J Neurol. 2014; 261:1628–1635.

39. Hara Y., Wakamori M., Ishii M., Maeno E., Nishida M., Yoshida T., Yamada H., Shimizu S., Mori E., Kudoh J., Shimizu N., Kurose H., Okada Y., Imoto K., Mori Y. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol. Cell. 2002; 9(1):163-173.

40. Hemming ML, Selkoe DJ. Amyloid β-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J. Biol. Chem. 2005; 280(45):37644–37650.

41. Horke S, Witte I, Wilgenbus P, Krüger M, Strand D, Förstermann U. Paraoxonase-2 reduces oxidative stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation. Circulation. 2007; 115(15): 2055-64.

42. Hu Q, ZiegelsteinRC. Hypoxia/reoxygenation stimulates intracellular calcium oscillations in human aortic endothelial cells. Circulation. 2000; 102(20):2541–2547.

43. Huang J, Upadhyay UM, Tamargo RJ. Inflammation in stroke and focal cerebral ischemia. Surg Neurol. 2006; 66:232-245.

44. Ichimura H, Parthasarathi K., Quadri S, Issekutz AC, Bhattacharya J. Mechano-oxidative coupling by mitochondria induces proinflammatory responses in lung venular capillaries. J. Clin. Invest. 2003;111(5):691–699.

45. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA., Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clear- ance of interstitial solutes, including amyloid β. Sci Transl Med. 2012; 4(147):111 doi:10.1126/sci-translmed.3003748.

46. Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The Glymphatic System: A Beginner’s Guide. Neurochem Res. 2015; 40(12):2583-2599.

47. John M, Oommen A, Zachariah A. Muscle injury in organophosphorous poisoning and its role in the development of intermediate syndrome. Neu- roToxicology. 2003; 24:43-53.

48. Jokanović M. Neurotoxic effects of organophospho- rus pesticides and possible association with neurodegenerative diseases in man: A review. Toxicology. 2018; 410:125-131.

49. Jokanović M, Antonijević B, Vučinić S. Epidemiological studies of anticholinesterase pesticide poisoning in Serbia. Anticholinesterase Pesticides: Metabolism, Neurotoxicity and Epidemiology/Satoh T and Gupta RC, editors; 2010:481-494.

50. Kalinowska A, Losy J. PECAM-1, a key player in neuroinflammation. Eur. J. Neurol. 2006; 13(12):1284–1290.

51. Keaney J, Campbell M. The dynamic blood-brain barrier. FEBS J. 2015; 282:4067–4079.

52. Kellett KAB, Hooper NM. The role of tissue nonspecific alkaline phosphatase (TNAP) in neurodegenerative diseases: Alzheimer’s disease in the focus. Subcell. Biochem. 2015; 76:363-374.

53. Khan N, Kennedy A, Cotton J, Brumby S. A Pest to Mental Health? Exploring the Link between Exposure to Agrichemicals in Farmers and Mental Health. J Environ Res Public Health. 2019; 16(8): doi.org/10.3390/ijerph16081327

54. Khatri R, McKinney AM, Swenson B, Janardhan V. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology. 2012; 79(1):52-57.

55. Kim SY, Buckwalter M, Soreq H, Vezzani A, Kaufer D. Blood-brain barrier dysfunction-induced inflammatory signaling in brain pathology and epileptogenesis. Epilepsia. 2012; 53(6):37-44.

56. Kiryu-Seo S, Kiyama H. Mitochondrial behavior during axon regeneration/degeneration in vivo. NeurosciRes. 2019; 139:42-47.

57. Kishida KT, Hoeffer CA., Hu D., Pao M., Holland SM., Klann E. Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol. Cell. Biol. 2006; 26:5908–5920.

58. Koizumi K, Wang G, Park L. Endothelial dysfunction and amyloid-β-induced neurovascular alterations. Cell. Mol. Neurobiol. 2016; 36(2):155-165.

59. Kori RK, Singh MK, Jain AK, Yadav RS. Neurochemical and Behavioral Dysfunctions in Pesticide Exposed Farm Workers: A Clinical Outcome. Indian J Clin Biochem. 2018; 33(4):372-381.

60. Kumar H, Jo M-J, Choi H, Muttigi MS, Shon S, Kim B-J, Lee S-H, Han I-B. Matrix Metallopro- teinase-8 Inhibition Prevents Disruption of BloodSpinal Cord Barrier and Attenuates Inflammation in Rat Model of Spinal Cord Injury. Mol Neuro- biol. 2018; 55:2577–2590.

61. Li Q, SyrovetsT, SimmetT, Ding J, Xu J, Chen W, ZhuD, GaoP. Plasmin induces intercellular adhe- sion molecule 1 expression in human endothelial cells via nuclear factor-κB/mitogen-activated pro- tein kinases-dependent pathways. Exp. Biol. Med. 2013; 238(2):176-186.

62. Li Q, Yang Y, Reis C, Tao T, Li W, Li X, Zhang JH. Cerebral Small Vessel Disease. Cell Transplant. 2018; 27(12):1711-1722.

63. London L, Flisher AJ, Wesseling C, Mergler D, Kromhout H. Suicide and exposure to organo- phosphate pesticides: cause or effect? J. Ind. Med. 2005; 47:308-321.

64. Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014; 19(2):181-92.

65. Louveau A, Smirnov I, Keyes T, Eccles J, Rouhani S, Peske J, Derecki N, Castle D, Mandell J, Lee K, Harris T, Kipnis J. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015; 523:337-341. doi:10.1038/nature14432.

66. Low PA. Endoneurial fluid pressure and microenvironment of nerve. Peripheral Neuropathy.1984; 1:599-617.

67. Malek N, Lawton MA, Swallow DMA, Grosset KA, Marrinan SL, Bajaj N, Barker RA, Burn DJ, Hardy J, Morris HR, Williams NM, Wood N, BenShlomo Y, Grosset DG Vascular disease and vascular risk factors in relation to motor features and cognition in early Parkinson’s disease. Mov Disord. 2016; 87(1):1518–1526.

68. Malli R, Frieden M, Osibow K, Zoratti C, Mayer M, Demaurex N, Graier WF. Sustained Ca2+ transfer across mitochondria is essential for mitochondrial Ca2+ buffering, store-operated Ca2+ entry, and Ca2+ store refilling. J. Biol. Chem. 2003; 278(45):44769–44779.

69. Malli R, Frieden M, Trenker M. The role of mitochondria for Ca2+ refilling of the endoplasmic reticulum. J. Biol. Chem. 2005; 280(13):12114- 12122.

70. Mansour A, Niizuma K, Rashad S, Sumiyoshi A, Ryoke R, Endo H, Endo T, Sato K, Kawashima R, Tominaga T. A refined model of chronic cerebral hypoperfusion resulting in cognitive impairment and a low mortality rate in rats. J. Neurosurg. 2018; 131(3):892-902.

71. McMurtray A, Nakamoto B, Shikuma C, Valcour V. Small-vessel vascular disease in human immunodeficiency virus infection: the Hawaii aging with HIV cohort study. Cerebrovasc Dis. 2007; 24:236- 241.

72. Mindukshev IV, Ermolaeva EE, VivulanetsEV, Shabanova EY, Petrishchev NN, Goncharov NV, Jenkins RO, Krivchenko AI. A new method for studying platelets, based upon the low-angle light scattering technique. Application of the method in experimental toxicology and clini- cal pathology. Spectroscopy. 2005; 19(5-6):247- 257.

73. Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harte- neck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM., Schultz G, Shimizu N, Zhu MX. A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell. 2002; 9(2):229-231.

74. Morris G, Maes M, Berk M, Carvalho AF, Puri BK Nutritional ketosis as an intervention to relieve astrogliosis: Possible therapeutic applications in the treatment of neurodegenerative and neuroprogres- sive disorders. Eur Psychiatry. 2020; 63(1):8.

75. Mustapha M, Nassir CMNCM, Aminuddin N, Safri AA, Ghazali MM. Cerebral Small Vessel Disease (CSVD) Lessons From the Animal Models. Front Physiol. 2019; 10. doi.org/10.3389/fphys.2019.01317

76. Myers GJ, Wegner J. Endothelial Glycocalyx and Cardiopulmonary Bypass. J Extra Corpor Technol. 2017; 49(3):174-181.

77. Nakada T. Virchow-Robin space and aquaporin-4: new insights on an old friend. Croat Med J. 2014; 55(4):328-336.

78. Niquet J, Baldwin R, Suchomelova L, Lumley L, Eavey R, Wasterlain CG. Treatment of experimental status epilepticus with synergistic drug combinations. Epilepsia. 2017; 58(4):49-53.

79. O’Brien JT, Thomas A. Vascular dementia. Lancet. 2015; 386:1698–1706.

80. Odman S. et al. Peripheral-Nerve as an Osmometer—Role of Endoneurial Capillaries in Frog Sciatic-Nerve. American Journal of Physiology. 1987; 252(3):335-341.

81. Olson Y. Vascular permeability in the peripheral nervous system. Peripheral Neuropathy. 1984; 1:579-597.

82. Ortiz GG, Pacheco-Moisés FP, Macías-Islas MÁ, Flores-Alvarado LJ, Mireles-Ramírez MA, González-Renovato ED, Hernández-Navarro VE, Sánchez-López AL, Alatorre-Jiménez MA Role of the blood-brain barrier in multiple sclerosis. Arch Med Res. 2014; 45:687–697.

83. Oudeman EA, Greving JP, Van den Berg-Vos RM, Biessels GJ, Bron EE, van Oostenbrugge R, de Bresser J, Kappelle LJ. Nonfocal Transient Neurological Attacks Are Associated With Cerebral Small Vessel Disease. Stroke. 2019; 50(12):3540-3544.

84. Patil G, Murthy N, Nikhil M Contributing Factors for Morbidity and Mortality in Patients with Organophosphate Poisoning on Mechanical Ventilation: A Retrospective Study in a Teaching Hospital. J Clin Diagn Res. 2016; 10(12):18-20.

85. Perez-Fernandez C, Flores P, Sánchez-Santed F. A Systematic Review on the Influences of Neurotoxicological Xenobiotic Compounds on Inhibitory Control. Front BehavNeurosci. 2019; 13:139.

86. Perrin RM, Harper SJ, Bates DO. A role for endothelial glycocalyx in regulating microvascular permeability in diabetes mellitus. Cell BiochemBiophys. 2007; 49:65-72.

87. Persidsky Y, Heilman D, Haorah J, Zelivyanskaya M, Persidsky R, Weber GA, Shimokawa H, Kai- buchi K, Ikezu T. Rho-mediated regulation of tight junctions during monocyte migration across the blood-brain barrier in HIV-1 encephalitis (HIVE). Blood. 2006; 107: 4770–4780. doi:10.1182/blood-2005-11-4721.

88. Pienaar IS, Lee CH, Elson JL, McGuinness L, Gen- tleman SM, Kalaria RN, Dexter DT Deep-brain stimulation associates with improved microvascu- lar integrity in the subthalamic nucleus in Par- kinson’s disease. Neurobiol Dis. 2015; 74:392-405.

89. Pires PW, Earley S. Redox regulation of transient receptor potential channels in the endothelium. Microcirculation. 2017; 24(3):1-19.

90. Radilov A, Rembovskiy V, Rybalchenko I, Save- lieva E, Podolskaya E, Babakov V, Ermolaeva E, Dulov S, Kuznetsov S, Mindukshev I, Shpak A, Krasnov I., Khlebnikova N, Jenkins R, Goncharov N. Handbook of the Toxicology of Chemical Warfare Agents. Gupta R., Editor; 2009:69-91.

91. Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol. 2012; 12(9):623-635.

92. Ray DE, Richards PG. The potential for toxic effects of chronic, low-dose exposure to organophosphates.Toxicol. Teratol. 2001; 120:343-351.

93. Read DJ, Li Y, Chao MV, Cavanagh JB, Glynn P. Neuropathy target esterase is required for adult vertebrate axon maintenance. J. Neurosci. 2009; 29:11594–11600.

94. Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, Picot MC, Baldy-Moulinier M, Bockaert J, Crespel A, Lerner-Natoli M. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain. 2007; 130:1942–1956.

95. Rohlman DS, Anger WK, Lein PJ. Correlating neurobehavioral performance with biomarkers of organophosphorous pesticide exposure. Neurotoxicol. 2011; 32:268-276.

96. Rojas A, Wang W, Glover A, Manji Z, Fu Y. Dingledine R Beneficial Outcome of Urethane Treatment Following Status Epilepticus in a Rat Organophosphorus: Toxicity Model eNeuro. 2018; 5(2):2018. doi:10.1523/ENEURO.0070-18.2018.

97. Roumenina LT et al. Endothelial cells: source, barrier, and target of defensive mediators. Immunol. Rev. 2016; 274(1):307-329.

98. Sánchez-Santed F, Colomina MT, Herrero Hernández E. Organophosphate pesticide exposure and neurodegeneration. Cortex. 2016; 74:417-26.

99. Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemens E, White JA, Bonnycastle L, Weber JL, Alonso ME. Genetic linkage evidence for a familial Alzheimer’s seasesease locus on chromosome 14. Science. 1992; 258(5082):668-671.

100. Shi Y, Zhang L, Pu H, Mao L, Hu X, Jiang X, Xu N, Stetler RA, Zhang F, Liu X, Leak RK, Keep RF, Ji X, Chen J. Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun. 2016;7:10523.

101. Song F, Xie K. Calcium-dependent neutral cysteine protease and organophosphate induced delayed neu- ropathy. Chem.-Biol. Interact. 2012; 200:114-118.

102. Strazza M, Pirrone V, Wigdahl B, Nonnemacher MR. Breaking down the barrier: the effects of HIV1 on the blood-brain barrier. Brain Res. 2011; 1399:96–115.

103. Sui Y-T, Bullock KM, Erickson MA, Zhang J, Banks WA. Alpha synuclein is transported into and out of the brain by the blood-brain barrier. Peptides. 2014; 62:197-202.

104. Sumoza-Toledo A, Penner R. TRPM2: a multi- functional ion channel for calcium signaling. J. Physiol. 2011; 589(7):1515-1525.

105. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-Brain Barrier: From Physi- ology to Disease and Back. Physiol Rev. 2019; 99(1):21-78.

106. Tattersall J. Seizure activity post organophosphate exposure. Front Biosci. 2009; 14:3688-711.

107. Trojsi F, Monsurrò MR, Tedeschi G. Exposure to environmental toxicants and pathogenesis of amyotrophic lateral sclerosis: state of the art and research perspectives. J Mol Sci. 2013; 14(8):15286- 311.

108. Trufanov SK, Rybakova EY, Avdonin PP, Tsitrina AA, Zharkikh IL, Goncharov NV, Jenkins RO, Avdonin PV. Rise in Rat Aortic Smooth Muscle Cells and Aorta Contraction. Cells. 2019; 8(10): doi:10.3390/cells8101144

109. Ueno M, Chiba Y, Murakami R, Matsumoto K, Fujihara R, Uemura N, Yanase K, Kamada M. Disturbance of Intracerebral Fluid Clearance and Blood-Brain Barrier in Vascular Cognitive Impairment. Int J Mol Sci. 2019; 20(10): 1-12. doi: 10.3390/ijms20102600.

110. van Hinsbergh VWM. Endothelium—role in regulation of coagulation and inflammation. Semin. Immunopathol. 2015; 34(1):93-106.

111. Varvel NH, Neher JJ, Bosch A, Wang W, Ransohoff RM, Miller RJ, Dingledine R. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc. Natl. Acad. Sci. 2016; 113(38):5665–5674.

112. Voorhees JR, Rohlman DS, Lein PJ, Pieper AA. Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds. Front Neurosci. 2017; 10:590.

113. Wang F, Cao Y, Ma L, Pei H, Rausch WD, Li H. Dysfunction of Cerebrovascular Endothelial Cells: Prelude to Vascular Dementia. Front Aging Neurosci. 2018; 10(376):1-23. doi:10.3389/fnagi.2018.00376.

114. Whetstone WD, Hsu J-YC, Eisenberg M, Werb Z, Noble-Haeusslein LJ. Blood-spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. J Neurosci Res. 2003; 74:227-239.

115. Wong D, Dorovini-Zis K. Upregulation of intercellular adhesion molecule-1 (ICAM-1) expression in primary cultures of human brain microvessel endothelial cells by cytokines and lipopolysaccharide. J. Neuroimmunol. 1992; 39(1):11-21.

116. Yamadera M, Fujimura H, Inoue K, Toyooka K, Mori C, Hirano H, Sakoda S. Microvascular disturbance with decreased pericyte coverage is prominent in the ventral horn of patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2015; 16:393-401.

117. Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, Luscinskas FW. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-αactivated vascular endothelium under flow. Blood. 2005; 106(2):584-592.

118. Yildirim E et al. The effect of chlorpyrifos on isolated thoracic aorta in rats. Biomed Res. 2013:376051.

119. Yilmaz M, Sebe A, Gumusay U, Topal M, Atli M, Icme F. Effectiveness of therapeutic plasma exchange in patients with intermediate syndrome due to organophosphate intoxication. Am. J. Emerg. Med. 2013; 31:953-957.


Review

For citations:


Goncharov N.V., Popova P.I., Golovkin A.S., Zalutskaya N.M., Palchikova E.I., Zanin K.V., Avdonin Р.V. Vascular endotelial dysfunction is a pathogenetic factor in the development of neurodegenerative diseases and cognitive impairment. V.M. BEKHTEREV REVIEW OF PSYCHIATRY AND MEDICAL PSYCHOLOGY. 2020;(3):11-26. (In Russ.) https://doi.org/10.31363/2313-7053-2020-3-11-26

Views: 1409


ISSN 2313-7053 (Print)
ISSN 2713-055X (Online)