Preview

V.M. BEKHTEREV REVIEW OF PSYCHIATRY AND MEDICAL PSYCHOLOGY

Advanced search

Tetrahydrobiopterin deficiency in schizophrenia as a new target for personalized medicine

https://doi.org/10.31363/2313-7053-2020-4-65-72

Abstract

Summary. Tetrahydrobiopterin (BH4) is an important cofactor, that involved in the synthesis of dopamine, norepinephrine, and serotonin, as well as affecting the production of nitric oxide (NO) and regulating the activity of the glutamatergic system. A few foreign studies have shown, that patients with schizophrenia had a markedly reduced level of BH4 compared to the healthy population.

The aim of this work was to study the association of BH4 deficiency with the risk of schizophrenia among Russian patients by comparison with a group of healthy volunteers.

Materials and methods: 50 patients with schizophrenia and 36 healthy volunteers
were randomly selected and underwent a biochemical study of the BH4 level using the method of competitive enzyme immunoassay (ELISA) on a spectrophotometer (Sunrise, Tecan) with a set of CEG421Ge (CloudClone Corp).

Results: it was found that the BH4 level was significantly lower in patients than in the control
group (3684.75 [1283.00; 4815.00] versus 4260.60 [4057.40; 5236.85] pmol / l, respectively, p = 0 , 0016). The proportion of patients with a BH4 level below the lower limit of the interquartile range in healthy volunteers (4057.40 pmol / l) is 30/50 (60%), the proportion of healthy volunteers with a BH4 level below this border is 9/36 (25%), the difference is statistically significant, χ2 = 10.35; p = 0.002; OR = 4.5; 95% CI [1.75; 11.56](CI — confidence interval). The correlation of BH4 level with the duration of the disease, gender, age of the subjects is very weak and not statistically significant.

Conclusion: further interdisciplinary studies are required to identify the causes and molecular mechanisms for the development of BH4 deficiency in schizophrenia and to develop approaches to personalized pharmacological intervention.

About the Authors

I. V. Semennov
Privolzhsky Research Medical University
Russian Federation
Nizhny Novgorod


Y. S. Zagryazhskaya
Clinical Psychiatric Hospital №1 of Nizhny Novgorod
Russian Federation
Nizhny Novgorod


A. S. Piatoikina
Clinical Psychiatric Hospital №1 of Nizhny Novgorod
Russian Federation
Nizhny Novgorod


T. V. Zhilyaeva
Privolzhsky Research Medical University
Russian Federation
Nizhny Novgorod


E. A. Manakova A.
Centralized Laboratory «AVK-Med»
Russian Federation
Nizhny Novgorod


A. S. Blagonravova
Privolzhsky Research Medical University
Russian Federation
Nizhny Novgorod


E. V. Verbitskaya
Pavlov First Saint Petersburg State Medical University
Russian Federation
Saint-Petersburg


G. E. Mazo
V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology
Russian Federation
Saint-Petersburg


References

1. Zhilyaeva TV, Pyatojkina AS, Blagonravova AS, Mazo GE. Genetic markers of one-carbon metabolism disorders in schizophrenia. Obozrenie psihiatrii i medicinskoj psihologii imeni V.M. Bekhtereva. 2019;4(1):67-69. DOI:10.31363/2313-7053-2019-4-1-67-69

2. Bernstein HG, Bogerts B, Keilhoff G. The many faces of nitric oxide in schizophrenia.Schizophr Res. 2005;78:69. doi:10.1016/j.schres.2005.05.019

3. Blau N, Thony B, Cotton RGH et al. Disorders of tetrahydrobiopterin and related biogenic amines.In book:The metabolic and molecular bases of inherited disease. McGraw-Hill, New York. 2001;1725.

4. Boldyrev AA. Molecular mechanisms of homocysteine toxicity. Biochemistry (Moscow). 2009;74(6):589. doi:10.1134/s0006297909060017

5. Bonafé L, Thöny B, Penzien JM, Czarnecki B, Blau N. Mutations in the Sepiapterin Reductase Gene Cause a Novel Tetrahydrobiopterin-Dependent Monoamine-Neurotransmitter Deficiency without Hyperphenylalaninemia. The American Journal of Human Genetics. 2001;69(2):269. doi:10.1086/321970

6. Choi YK, Tarazi FI. Alterations in dopamine and glutamate neurotransmission in tetrahydrobiopterin deficient spr-/-mice: relevance to schizophrenia. BMB Rep. 2010; 43:593. doi:10.5483/bmbrep.2010.43.9.593

7. Clelland JD, Read LL, Smeed J, Clelland CL. Regulation of cortical and peripheral GCH1 expression and biopterin levels in schizophrenia-spectrum disorders. Psychiatry Research. 2018;262:229. doi:10.1016/j.psychres.2018.02.020

8. Coppen A, Swade C, Jones SA et al. Depression and tetrahydrobiopterin: The folate connection. Journal of Affective Disorders. 1989;16(2-3):103. doi:10.1016/0165-0327(89)90062-1

9. Garay RP, Bourin M, de Paillette E, Samalin L, Hameg A, Llorca P-M. Potential serotonergic agents for the treatment of schizophrenia. Expert Opinion on Investigational Drugs. 2015;25(2):159. doi:10.1517/13543784.2016.1121995

10. Goff DC, Bottiglieri T, Arning E et al. Folate, Homo-cysteine, and Negative Symptoms in Schizophrenia. American Journal of Psychiatry. 2004;161(9):1705. doi:10.1176/appi.ajp.161.9.1705

11. Goldsmith D, Rapaport M, Miller B. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Molecular psychiatry. 2016;21:1696-709. doi:10.1038/mp.2016.3

12. Halberstadt AL, Geyer MA. Serotonergic hallucinogens as translational models relevant to schizophrenia.Int J Neuropsychopharmacol. 2013;16(10):2165–2180. doi:10.1017/s1461145713000722

13. Saffran M. Tetrahydrobiopterin: Basic biochemistry

14. and role in human disease.Biochemical Education. 1998;26(2):189–190. doi:10.1016/s0307-4412(98)00066-1

15. Kiss JP. Role of nitric oxide in the regulation of monoaminergic neurotransmission. Brain Res Bull. 2000;52(6):459-466. doi:10.1016/s0361-9230(00)00282-3

16. Koshimura K, Miwa S, Lee K, Fujiwara M, Watanabe Y. Enhancement of dopamine release in vivo from the rat striatum by dialytic perfusion of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin. J Neurochem. 1990; 54(4):1391-1397. doi:10.1111/j.1471-4159.1990.tb01974.x

17. Leeming RJ, Blair JA, Melikian V, O’Gorman DJ.Biopterin derivatives in human body fluids and tissues. J ClinPathol. 1976;29(5):444-451. doi:10.1136/jcp.29.5.444

18. Mataga N, Imamura K, Watanabe Y. 6R-tetrahy-drobiopterin perfusion enhances dopamine, serotonin, and glutamate outputs in dialysate from rat striatum and frontal cortex. Brain Res. 1991;551(1-2):64-71. doi:10.1016/0006-8993(91)90914-h

19. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70(7):663-71. doi:10.1016/j.biopsych.2011.04.013

20. Muntjewerff JW, Kahn RS, Blom HJ, Den Heijer M. Homocysteine, methylenetetrahydrofolate reductase and risk of schizophrenia: a meta-analysis. Molecular Psychiatry. 2005;11(2):143-149. doi:10.1038/sj.mp.4001746

21. Neurauter G, Schrocksnadel K, Scholl-Burgi S, Sperner-Unterweger B, Schubert C, Ledochowski M, Fuchs D. Chronic Immune Stimulation Correlates with Reduced Phenylalanine Turnover. Current Drug Metabolism. 2008;9(7):622-627. doi:10.2174/138920008785821738

22. Newton DF, Naiberg MR, Goldstein BI. Oxidative stress and cognition amongst adults without dementia or stroke: Implications for mechanistic and therapeutic research in psychiatric disorders. Psychiatry Research. 2015;227(2-3):127-134. doi:10.1016/j.psychres.2015.03.038

23. Prast H, Philippu A. Nitric oxide as modulator of neuronal function. ProgNeurobiol. 2001;64(1):51-68. doi:10.1016/s0301-0082(00)00044-7

24. Ramirez J, Garnica R, Boll M-C. Low concentration of nitrite and nitrate in cerebrospinal fluid from schizophrenic patients; a pilot study. Schizophr Res. 2004;68(2-3):357–361. doi:10.1016/s0920-9964(03)00070-7

25. Rao ML, Gross G, Strebel B, Bräunig P, Huber G, KlosterkötterJ.Serum amino acids, central monoamines, and hormones in drug-naive, drug-free, and neuroleptic-treated schizophrenic patients and healthy subjects. Psychiatry Res. 1990;34(3):243–257. doi:10.1016/0165-1781(90)90003-n

26. Richardson MA, Read LL, Reilly MA, Clelland JD, Clelland CLT. Analysis of Plasma Biopterin Levels in Psychiatric Disorders Suggests a Common BH4 Deficit in Schizophrenia and Schizoaffective Disorder. Neurochemical Research. 2006;32(1):107-113. doi:10.1007/s11064-006-9233-5

27. Richardson MA, Read LL, Taylor Clelland CL, Reilly MA, Chao HM, Guynn RW, Clelland JD. Evidence for a Tetrahydrobiopterin Deficit in Schizo-phrenia. Neuropsychobiology. 2005;52(4):190-201. doi:10.1159/000089002

28. Snyder SH, Ferris CD. Novel neurotransmitters and their neuropsychiatric relevance. Am J Psychiatry. 2000. 157(11):1738-1751. doi:10.1176/appi.ajp.157.11.1738

29. Sumi-Ichinose C, Urano F, Kuroda R, Ohye T, Kojima M, Tazawa M, … Ichinose H.Catecholamines and serotonin are differently regulated by tetrahy-drobiopterin: a study from 6-pyruvoyltetrahydropterin synthase knockout mice. J Biol Chem. 2001; 276(44):41150-41160. doi:10.1074/jbc.m102237200

30.


Review

For citations:


Semennov I.V., Zagryazhskaya Y.S., Piatoikina A.S., Zhilyaeva T.V., Manakova A. E.A., Blagonravova A.S., Verbitskaya E.V., Mazo G.E. Tetrahydrobiopterin deficiency in schizophrenia as a new target for personalized medicine. V.M. BEKHTEREV REVIEW OF PSYCHIATRY AND MEDICAL PSYCHOLOGY. 2020;(4):65-72. (In Russ.) https://doi.org/10.31363/2313-7053-2020-4-65-72

Views: 1843


ISSN 2313-7053 (Print)
ISSN 2713-055X (Online)