Evaluation of alcohol consumption motivation: psychometric properties of the Alcohol Consumption Motivation Inventory by V.Yu. Zavyalov
https://doi.org/10.31363/2313-7053-2021-57-4-76-85
Abstract
The alcohol consumption motivation inventory (ACM) was developed by V.Yu. Zavyalov. Now it is a widespread psychometric tool in research and clinical practice for the evaluation of alcohol consumption motivation in Russian-speaking patients with alcohol use disorders. The aim of the study is to analyze the psychometric properties of the ACM inventory. Results show that the factor structure of the ACM inventory significantly differs from the one stated in the original. The results of the statistical analysis allowed three significant clusters. Cluster A was composed of the scales of the conditioned triad—traditional, submissive, and pseudo-cultural motives. This cluster also partially included hedonistic motives and self-harm motives. Cluster B was composed of scales of personal and pathological triads—withdrawal, ataractic and hyperactivational motives. Hedonistic motives and addictive motives were also partially included. Cluster B included self-harm motives and hangover (addictive) motives. According to the data obtained, the ACM inventory cannot measure an alcohol consumption motivation in the way of the original method. Future work on the modification of the ACM inventory should be based on the results obtained recently in neurophysiological and clinicalpsychopharmacological studies in the field of motivation for alcohol consumption, and includes the revision of the items of the questionnaire, a statistically substantiated gradation of levels for assessing the effectiveness of the motives for alcohol use, and the validation of the version of the ACM questionnaire in women sample.
About the Authors
A. V. TrusovaRussian Federation
Anna V. Trusova
Saint Petersburg
A. A. Berezina
Russian Federation
Anna A. Berezina
Saint Petersburg
A. N. Gvozdetckii
Russian Federation
Anton N. Gvozdetckii
Saint Petersburg
S. G. Klimanova
Russian Federation
Svetlana G. Klimanova
Saint Petersburg
References
1. Alfimova M.V. Ocenka motivacii v kontekste translyacionnoj psihiatrii. Diagnostika v medicinskoj (klinicheskoj) psihologii: sovremennoe sostoyanie i perspektivy. Kollektivnaya monografiya. M.: Moskovskij gosudarstvennyj psihologo-pedagogicheskij universitet. 2016:53-65. (In Russ.).
2. Zav’yalov V.Yu. Kliniko-psihologicheskie aspekty formirovaniya zavisimosti ot alkogolya. Avtoreferat dis. ... doktora medicinskih nauk. Moskva. 1993. (In Russ.).
3. Zav’yalov V.Yu. Psihologicheskie aspekty formirovaniya alkogol’noj zavisimosti. Novosibirsk: Nauka. 1988. (In Russ.).
4. Klyachin AI, Shamov SA, Gadjieva UH, Belozerov BG, Tsygankov DB. Comparative characteristics of clinical-psychological peculiarities in patients with sustainable and unusual remission. Narkologia. 2018; 17(11):48-55. doi:10.25557/1682-8313.2018.11.48-55 (In Russ.).
5. Kopytov AV, Bychenko IV, Glebko OP. Features of motivation of alcohol consumption in persons with alcohol addiction of adolescence and young age. Psihiatriya, psihoterapiya i klinicheskaya psihologiya. 2018; 9(4):496-506 (In Russ.).
6. Rybakova KV. Diagnostic criteria and differential diagnosis of primary and secondary mental disorders comorbid with alcohol dependence. Voprosy narkologii. 2019; 12(183):35-54. doi:10.47877/0234-0623_2019_12_34 (In Russ.).
7. Trusova AV. Motivational interviewing as a part of complex treatment of alcohol dependence: experience of use and evaluation of effectiveness. Obozrenie psikhiatrii i meditsinskoi psikhologii imeni V.M.Bekhtereva. 2015; 4:100-108 (In Russ.).
8. Frolova NN, Krupitsky EM, Eryshev OF. Clinical and psychological features of solitary drinking phenomenon. Obozrenie psikhiatrii i meditsinskoi psikhologii imeni V.M. Bekhtereva. 2009; 1:92-97 (In Russ.).
9. Annis HM, Graham JM. Profile Types on The Inventory of Drinking Situations: Implications for Relapse Prevention Counseling. Psychology of Addictive Behaviors. 1995; 9(3):176.
10. Benjamin DJ, Berger JO, Johannesson M, Nosek BA, Wagenmakers EJ, Berk R, et al. Redefine statistical significance. Nature Human Behaviour. 2018; 2(1):6–10.
11. Cooper ML. Motivations for alcohol use among adolescents: Development and validation of a four-factor model. Psychological Assessment. 1994; 6(2):117–128. doi:10.1037/1040-3590.6.2.117
12. Cooper ML, Kuntsche E, Levitt A, Barber LL, Wolf S. Motivational Models of Substance Use: A Review of Theory and Research on Motives for Using Alcohol, Marijuana, and Tobacco. The Oxford Handbook of Substance Use and Substance. 2016;1. doi: 10.1093/oxfordhb/9780199381678.013.017
13. Cox WM, Klinger E. A motivational model of alcohol use. Journal of Abnormal Psychology. 1988; 97(2):168–180. doi:10.1037/0021-843X.97.2.168
14. Gilpin NW, Koob GF. Neurobiology of alcohol dependence: focus on motivational mechanisms. Alcohol Res Health. 2008; 31(3):185-95.
15. Giordani P, Ferraro MB, Martella F. An Introduction to Clustering with R. Singapore: Springer Singapore. 2020. (Series Behaviormetrics: Quantitative Approaches to Human Behavior. Vol. 1). doi:10.1007/978-981-13-0553-5
16. Grodin EN, Bujarski S, Venegas A, Baskerville WA, Nieto SJ, Jentsch JD, Ray LA. Reward, Relief and Habit Drinking: Initial Validation of a Brief Assessment Tool. Alcohol Alcohol. 2019; 1(54-6):574-583. doi: 10.1093/alcalc/agz075
17. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016; 3(8):760-773. doi: 10.1016/S2215-0366(16)00104-8
18. Kuntsche E, Knibbe R, Gmel G, Engels R. ‘I Drink Spirits to Get Drunk and Block Out My Problems… ’Beverage Preference, Drinking Motives and Alcohol Use in Adolescence. Alcohol and Alcoholism. 2006; 41(5):566-573. doi: 10.1093/alcalc/agl046
19. Leeuw J, Mair P. Multidimensional Scaling Using Majorization: SMACOF in R. Journal of Statistical Software. 2009; 31(1):1–30. doi: 10.18637/jss.v031.i03
20. Mair P, Borg I, Rusch T. Goodness-of-Fit Assessment in Multidimensional Scaling and Unfolding. Multivariate Behav Res. 2016; 51(6):772-789. doi:10.1080/00273171.2016.1235966.
21. Mayer M. missRanger: Fast Imputation of Missing Values [github.com]. Github. 2021. Available: https://github.com/mayer79/missRanger
22. Phipson B, Smyth GK. Permutation P-values Should Never Be Zero: Calculating Exact P-values When Permutations Are Randomly Drawn. Statistical Applications in Genetics and Molecular Biology. 2010; 9:Article39. doi:10.2202/1544-6115.1585
23. Stekhoven DJ, Bühlmann P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012; 28(1):112–118. doi: 10.1093/bioinformatics/btr597
24. Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2001; 63(2):411–423. doi:10.1111/1467-9868.00293
25. West R. EMCDDA Insights Series n 14. Models of addiction. European Monitoring Centre for Drugs and Drug Addiction. Luxembourg: Publications Office of the European Union. 2013. doi: 10.2810/99994
26. Wright MN, Ziegler A. ranger : A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J Stat Soft. 2017; 77(1). doi:10.18637/jss.v077.i01
Review
For citations:
Trusova A.V., Berezina A.A., Gvozdetckii A.N., Klimanova S.G. Evaluation of alcohol consumption motivation: psychometric properties of the Alcohol Consumption Motivation Inventory by V.Yu. Zavyalov. V.M. BEKHTEREV REVIEW OF PSYCHIATRY AND MEDICAL PSYCHOLOGY. 2021;55(4):76-85. (In Russ.) https://doi.org/10.31363/2313-7053-2021-57-4-76-85