Роль дофамина и норадреналина в алкоголь-зависимом поведении: от корреляций к механизмам
https://doi.org/10.31363/2313-7053-2022-56-3-13-29
Аннотация
Используя модели на животных, воспроизводящие ключевые характеристики алкогольной зависимости, был достигнут значительный прогресс в идентификации нейрохимических субстратов данного заболевания, ведущую роль среди которых играют дофамин и норадреналин. Последние внедрения оптогенетических технологий в область алкогольных исследований предоставили возможность идентифицировать в пределах дофаминергической и норадренергической систем специфические паттерны нейропередачи, которые формируют этанол-зависимое поведение. Представляемый обзор литературы преимущественно сфокусирован на экспериментальных исследованиях, демонстрирующих эффективность современных технологий в раскрытии катехоламиновых механизмов аддиктивного поведения, направленного на употребление алкоголя.
Ключевые слова
Об авторах
В. П. ГриневичРоссия
Гриневич Владимир Павлович – к.б.н./PhD, адьюнкт-профессор, ведущий специалист направления «Нейробиолигия» НЦ генетики и наук о жизни
Краснодарский край
В. В. Немец
Россия
Немец Всеволод Владимирович – аспирант и младший научный сотрудник Института трансляционной биомедицины
Санкт-Петербург
Е. М. Крупицкий
Россия
Крупицкий Евгений Михайлович – д.м.н., профессор, заместитель директора по научной работе и руководитель отдела аддиктологии; руководитель лаборатории клинической фармакологии аддиктивных состояний в институте фармакологии им. А.В.Вальдмана
Санкт-Петербург
Р. Р. Гайнетдинов
Россия
Гайнетдинов Рауль Радикович – к.м.н., директор Института трансляционной биомедицины и научный руководитель Клиники высоких медицинских технологий им. Н. И. Пирогова; руководитель группы направления «Нейроболигия» НЦ генетики и наук о жизни
Краснодарский край;
Санкт-Петербург
Е. А. Будыгин
Россия
Будыгин Евгений Александрович — к.б.н., профессор, руководитель Направления «Нейробиология» НЦ генетики и наук о жизни
Краснодарский край
Список литературы
1. Панченко Л.Ф., Брюсов О.С., Балашов А.М., Гриневич В.П., Островский Ю.М. Взаимодействие некоторых алкалоидов тетрагидроизохинолина с опиатными рецепторами в гипоталамусе и среднем мозге крыс. Вопр. Мед. Хим. 1982;28(5):88-92.
2. Паценко А.А., Гриневич В.П. Высокая эффективность тетрагидроизохинолинов по отношению к сайтам связывания с высоким сродством дофамина в полосатом теле крысы. Нейрохимия. 1988;79(1):33-38.
3. Паценко А.А., Гриневич В.П. Определение содержание сальсолинола в полосатом теле крысы радиометрическим методом. ВИНИТИ. 1987;27250-В87:1-14.
4. Паценко А.А., Гриневич В.П., Островский Ю.М. Взаимодействие простых тетрагидроизохинолинов с опиатными и высокоаффинными дофаминовыми (D3) рецепторами в полосатом теле крысы. Фармакол. Токсикол. 1987;4:33-35.
5. Adamantidis AR, Tsai HC, Boutrel B, Zhang F, Stuber GD, Budygin EA, Touriño C, Bonci A, Deisseroth K, de Lecea L. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci. 2011;31(30):10829-10835. https://doi.org/10.1523/jneurosci.2246-11.2011
6. Anstrom KK, Miczek KA, Budygin E. Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats. Neuroscience. 2009;161(1):3-12.
7. Aston-Jones G, Bloom FE. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci. 1981;1(8):876-886. https://doi.org/10.1523/jneurosci.01-08-00876.1981
8. Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 2005;28:403-450. https://doi.org/10.1146/annurev.neu-ro.28.061604.135709
9. Bailey CP, O’Callaghan MJ, Croft AP, Manley SJ, Little HJ. Alterations in mesolimbic dopamine function during the abstinence period following chronic ethanol consumption. Neuropharmacology. 2001;41(8):989-999. https://doi.org/10.1016/s0028-3908(01)00146-0
10. Barak S, Carnicella S, Yowell QV, Ron D. Glial cell line-derived neurotrophic factor reverses alcoholinduced allostasis of the mesolimbic dopaminergic system: implications for alcohol reward and seeking. J Neurosci. 2011;31(27):9885-9894. https://doi.org/10.1523/jneurosci.1750-11.2011
11. Bass CE, Grinevich VP, Gioia D, Day-Brown J, Bonin KD, Stuber GD, Weiner JL, Budygin E. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration. Frontiers in behavioral neuroscience. 2013;7:173.
12. Bassareo V, Frau R, Maccioni R, Caboni P, Manis C, Peana AT, Migheli R, Porru S, Acquas E. Ethanol-Dependent Synthesis of Salsolinol in the Posterior Ventral Tegmental Area as Key Mechanism of Ethanol’s Action on Mesolimbic Dopamine. Front Neurosci. 2021;15:675061. https://doi.org/10.3389/fnins.2021.675061
13. Berry MD, Gainetdinov RR, Hoener MC, Shahid M. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacology & therapeutics. 2017;180:161-180.
14. Boileau I, Assaad JM, Pihl RO, Benkelfat C, Leyton M, Diksic M, Tremblay RE, Dagher A. Alcohol promotes dopamine release in the human nucleus accumbens. Synapse. 2003;49(4):226-231. https://doi.org/10.1002/syn.10226
15. Borg S, Kvande H, Sedvall G. Central norepinephrine metabolism during alcohol intoxication in addicts and healthy volunteers. Science. 1981;213(4512):1135-1137. https://doi.org/10.1126/science.7268421
16. Borodovitsyna O, Joshi N, Chandler D. Persistent Stress-Induced Neuroplastic Changes in the Locus Coeruleus/Norepinephrine System. Neural Plast. 2018;2018:1892570. https://doi.org/10.1155/2018/1892570
17. Bradaia A, Trube G, Stalder H, Norcross RD, Ozmen L, Wettstein JG, Pinard A, Buchy D, Gassmann M, Hoener MC, Bettler B. The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system. Proc Natl Acad Sci USA. 2009;106(47):20081-20086. https://doi.org/10.1073/pnas.0906522106
18. Brodie MS. Increased ethanol excitation of dopaminergic neurons of the ventral tegmental area after chronic ethanol treatment. Alcohol Clin Exp Res. 2002;26(7):1024-1030. https://doi.org/10.1097/01.alc.0000021336.33310.6b
19. Budygin EA. Dopamine uptake inhibition is positively correlated with cocaine-induced stereotyped behavior. Neurosci Lett. 2007;429(1):55-8. 10.1016/j.neulet.2007.09.064
20. Budygin EA, Bass CE, Grinevich VP, Deal AL, Bonin KD, Weiner JL. Opposite consequences of tonic and phasic increases in accumbal dopamine on alcohol-seeking behavior. IScience. 2020;23(3):100877.
21. Budygin EA, John CE, Mateo Y, Daunais JB, Friedman DP, Grant KA, Jones SR. Chronic ethanol exposure alters presynaptic dopamine function in the striatum of monkeys: a preliminary study. Synapse. 2003;50(3):266-268.
22. Budygin EA, John CE, Mateo Y, Daunais JB, Friedman DP, Grant KA, Jones SR. Chronic ethanol exposure alters presynaptic dopamine function in the striatum of monkeys: a preliminary study. Synapse. 2003;50(3):266-268. https://doi.org/10.1002/syn.10269
23. Budygin EA, Oleson EB, Mathews TA, Läck AK, Diaz MR, McCool BA, Jones SR. Effects of chronic alcohol exposure on dopamine uptake in rat nucleus accumbens and caudate putamen. Psychopharmacology (Berl). 2007;193(4):495-501. https://doi.org/10.1007/s00213-007-0812-1
24. Budygin EA, Phillips PE, Robinson DL, Kennedy AP, Gainetdinov RR, Wightman RM. Effect of acute ethanol on striatal dopamine neurotransmission in ambulatory rats. J Pharmacol Exp Ther. 2001;297(1):27-34.
25. Budygin EA, Phillips PE, Wightman RM, Jones SR. Terminal effects of ethanol on dopamine dynamics in rat nucleus accumbens: an in vitro voltammetric study. Synapse. 2001;42(2):77-79. https://doi.org/10.1002/syn.1101
26. Charlet K, Beck A, Heinz A. The dopamine system in mediating alcohol effects in humans. Curr Top Behav Neurosci. 2013;13:461-488. https://doi.org/10.1007/7854_2011_130
27. Chen X, Zheng X, Ali S, Guo M, Zhong R, Chen Z, Zhang Y, Qing H, Deng Y. Isolation and Sequencing of Salsolinol Synthase, an Enzyme Catalyzing Salsolinol Biosynthesis. ACS Chem Neurosci. 2018;9(6):1388-1398. https://doi.org/10.1021/acschemneuro.8b00023
28. Clayton EC, Rajkowski J, Cohen JD, Aston-Jones G. Phasic activation of monkey locus ceruleus neurons by simple decisions in a forced-choice task. J Neurosci. 2004;24(44):9914-9920. https://doi.org/10.1523/jneurosci.2446-04.2004
29. Corrodi H, Fuxe K, Hökfelt T. The effect of ethanol on the activity of central catecholamine neurones in rat brain. J Pharm Pharmacol. 1966;18(12):821-823. https://doi.org/10.1111/j.2042-7158.1966.tb07817.x
30. Curtis AL, Leiser SC, Snyder K, Valentino RJ. Predator stress engages corticotropin-releasing factor and opioid systems to alter the operating mode of locus coeruleus norepinephrine neurons. Neuropharmacology. 2012;62(4):1737-1745. https://doi.org/10.1016/j.neuropharm.2011.11.020
31. Cushman P, Jr., Forbes R, Lerner W, Stewart M. Alcohol withdrawal syndromes: clinical management with lofexidine. Alcohol Clin Exp Res. 1985;9(2):103-108. https://doi.org/10.1111/j.1530-0277.1985.tb05527.x
32. Darrouj J, Puri N, Prince E, Lomonaco A, Spevetz A, Gerber DR. Dexmedetomidine infusion as adjunctive therapy to benzodiazepines for acute alcohol withdrawal. Ann Pharmacother. 2008;42(11):1703-1705. https://doi.org/10.1345/aph.1K678
33. Deal AL, Bass CE, Grinevich VP, Delbono O, Bonin KD, Weiner JL, Budygin EA. Bidirectional Control of Alcohol-drinking Behaviors Through Locus Coeruleus Optoactivation. Neuroscience. 2020;443:84-92. https://doi.org/10.1016/j.neuroscience.2020.07.024
34. Deal AL, Konstantopoulos JK, Weiner JL, Budygin EA. Exploring the consequences of social defeat stress and intermittent ethanol drinking on dopamine dynamics in the rat nucleus accumbens. Scientific reports. 2018;8(1):1-9.
35. Deehan GA, Jr., Brodie MS, Rodd ZA. What is in that drink: the biological actions of ethanol, acetaldehyde, and salsolinol. Curr Top Behav Neurosci. 2013;13:163-184. https://doi.org/10.1007/7854_2011_198
36. Diana M. The dopamine hypothesis of drug addiction and its potential therapeutic value. Front Psychiatry. 2011;2:64. https://doi.org/10.3389/fpsyt.2011.00064
37. Diana M, Peana AT, Sirca D, Lintas A, Melis M, Enrico P. Crucial role of acetaldehyde in alcohol activation of the mesolimbic dopamine system. Ann N Y Acad Sci. 2008;1139:307-317. https://doi.org/10.1196/annals.1432.009
38. Diana M, Pistis M, Carboni S, Gessa GL, Rossetti ZL. Profound decrement of mesolimbic dopaminergic neuronal activity during ethanol withdrawal syndrome in rats: electrophysiological and biochemical evidence. Proc Natl Acad Sci USA. 1993;90(17):7966-7969. https://doi.org/10.1073/pnas.90.17.7966
39. Diana M, Pistis M, Muntoni A, Gessa G. Mesolimbic dopaminergic reduction outlasts ethanol withdrawal syndrome: evidence of protracted abstinence. Neuroscience. 1996;71(2):411-415. https://doi.org/10.1016/0306-4522(95)00482-3
40. Diana M, Rossetti ZL, Gessa G. Rewarding and aversive effects of ethanol: interplay of GABA, glutamate and dopamine. Alcohol Alcohol Suppl. 1993;2:315-319.
41. Ding ZM, Rodd ZA, Engleman EA, McBride WJ. Sensitization of ventral tegmental area dopamine neurons to the stimulating effects of ethanol. Alcohol Clin Exp Res. 2009;33(9):1571-1581. https://doi.org/10.1111/j.1530-0277.2009.00985.x
42. Doyon WM, York JL, Diaz LM, Samson HH, Czachowski CL, Gonzales RA. Dopamine activity in the nucleus accumbens during consummatory phases of oral ethanol self-administration. Alcohol Clin Exp Res. 2003;27(10):1573-1582. https://doi.org/10.1097/01.alc.0000089959.66222.b8
43. Duncan CC, Fernando PW. Effects of tetrahydropapaveroline in the nucleus accumbens and the ventral tegmental area on ethanol preference in the rat. Alcohol. 1991;8(2):87-90. https://doi.org/10.1016/0741-8329(91)91314-r
44. Edwards S, Guerrero M, Ghoneim OM, Roberts E, Koob GF. Evidence that vasopressin V1b receptors mediate the transition to excessive drinking in ethanol-dependent rats. Addict Biol. 2012;17(1):76-85. https://doi.org/10.1111/j.1369-1600.2010.00291.x
45. Feltmann K, Fredriksson I, Wirf M, Schilström B, Steensland P. The monoamine stabilizer (-)- OSU6162 counteracts downregulated dopamine output in the nucleus accumbens of long-term drinking Wistar rats. Addict Biol. 2016;21(2):438-449. https://doi.org/10.1111/adb.12304
46. Fitzgerald PJ. Elevated Norepinephrine may be a Unifying Etiological Factor in the Abuse of a Broad Range of Substances: Alcohol, Nicotine, Marijuana, Heroin, Cocaine, and Caffeine. Subst Abuse. 2013;7:171-183. https://doi.org/10.4137/sart.s13019
47. Foddai M, Dosia G, Spiga S, Diana M. Acetaldehyde increases dopaminergic neuronal activity in the VTA. Neuropsychopharmacology. 2004;29(3):530-536. https://doi.org/10.1038/sj.npp.1300326
48. Fox HC, Anderson GM, Tuit K, Hansen J, Kimmerling A, Siedlarz KM, Morgan PT, Sinha R. Prazosin effects on stress- and cue-induced craving and stress response in alcohol-dependent individuals: preliminary findings. Alcohol Clin Exp Res. 2012;36(2):351-360. https://doi.org/10.1111/j.1530-0277.2011.01628.x
49. Freeman AS, Meltzer LT, Bunney BS. Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci. 1985;36(20):1983-1994. 10.1016/0024-3205(85)90448-5
50. Gilpin NW, Koob GF. Effects of β-adrenoceptor antagonists on alcohol drinking by alcohol-dependent rats. Psychopharmacology (Berl). 2010;212(3):431-439. https://doi.org/10.1007/s00213-010-1967-8
51. Gilpin NW, Weiner JL. Neurobiology of comorbid post-traumatic stress disorder and alcohol-use disorder. Genes Brain Behav. 2017;16(1):15-43. https://doi.org/10.1111/gbb.12349
52. Gonzales RA, Job MO, Doyon WM. The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol Ther. 2004;103(2):121-146. https://doi.org/10.1016/j.pharmthera.2004.06.002
53. Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience. 1991;41(1):1-24. https://doi.org/10.1016/0306-4522(91)90196-u
54. Grace AA. The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction. 2000;95 Suppl 2:S119-128. https://doi.org/10.1080/09652140050111690
55. Grace AA, Bunney BS. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons--1. Identification and characterization. Neuroscience. 1983;10(2):301-315. https://doi.org/10.1016/0306-4522(83)90135-5
56. Grace AA, Bunney BS. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons--2. Action potential generating mechanisms and morphological correlates. Neuroscience. 1983;10(2):317-331. https://doi.org/10.1016/0306-4522(83)90136-7
57. Grace AA, Bunney BS. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons--3. Evidence for electrotonic coupling. Neuroscience. 1983;10(2):333-348. https://doi.org/10.1016/0306-4522(83)90137-9
58. Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci. 1984;4(11):2877-2890. https://doi.org/10.1523/jneurosci.04-11-02877.1984
59. Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci. 1984;4(11):2866-2876. https://doi.org/10.1523/jneurosci.04-11-02866.1984
60. Grant KA. The role of 5-HT3 receptors in drug dependence. Drug Alcohol Depend. 1995;38(2):155-71. https://doi.org/10.1016/0376-8716(95)01120-n
61. Grant S. Let’s not be impulsive: comments on Lubman et al. 2004.
62. Haass-Koffler CL, Swift RM, Leggio L. Noradrenergic targets for the treatment of alcohol use disorder. Psychopharmacology (Berl). 2018;235(6):1625-1634. https://doi.org/10.1007/s00213-018-4843-6
63. Hawley RJ, Major LF, Schulman EA, Lake CR. CSF levels of norepinephrine during alcohol withdrawal. Arch Neurol. 1981;38(5):289-292. https://doi.org/10.1001/arch-neur.1981.00510050055008
64. Heilig M, Egli M, Crabbe JC, Becker HC. Acute withdrawal, protracted abstinence and negative affect in alcoholism: are they linked? Addict Biol. 2010;15(2):169-184. https://doi.org/10.1111/j.1369-1600.2009.00194.x
65. Hietala J, West C, Syvälahti E, Någren K, Lehikoinen P, Sonninen P, Ruotsalainen U. Striatal D2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence. Psychopharmacology (Berl). 1994;116(3):285-290. https://doi.org/10.1007/bf02245330
66. Hipólito L, Sánchez MJ, Polache A, Granero L. Brain metabolism of ethanol and alcoholism: an update. Curr Drug Metab. 2007;8(7):716-727. https://doi.org/10.2174/138920007782109797
67. Hunt WA, Majchrowicz E. Alterations in the turnover of brain norepinephrine and dopamine in alcohol-dependent rats. J Neurochem. 1974;23(3):549-552. https://doi.org/10.1111/j.1471-4159.1974.tb06058.x
68. Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R. Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience. 2002;114(2):475-492. https://doi.org/10.1016/s0306-4522(02)00267-1
69. Imperato A, Di Chiara G. Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J Pharmacol Exp Ther. 1986;239(1):219-228.
70. Jadzic D, Bassareo V, Carta AR, Carboni E. Nicotine, cocaine, amphetamine, morphine, and ethanol increase norepinephrine output in the bed nucleus of stria terminalis of freely moving rats. Addict Biol. 2021;26(1):e12864. https://doi.org/10.1111/adb.12864
71. Jones SR, Mathews TA, Budygin EA. Effect of moderate ethanol dose on dopamine uptake in rat nucleus accumbens in vivo. Synapse. 2006;60(3):251-255. https://doi.org/10.1002/syn.20294
72. Juarez B, Morel C, Ku SM, Liu Y, Zhang H, Montgomery S, Gregoire H, Ribeiro E, Crumiller M, Roman- Ortiz C, Walsh JJ, Jackson K, Croote DE, Zhu Y, Zhang S, Vendruscolo LF, Edwards S, Roberts A, Hodes GE, Lu Y, Calipari ES, Chaudhury D, Friedman AK, Han MH. Midbrain circuit regulation of individual alcohol drinking behaviors in mice. Nat Commun. 2017;8(1):2220. https://doi.org/10.1038/s41467-017-02365-8
73. Karkhanis AN, Alexander NJ, McCool BA, Weiner JL, Jones SR. Chronic social isolation during adolescence augments catecholamine response to acute ethanol in the basolateral amygdala. Synapse. 2015;69(8):385-395.
74. Karkhanis AN, Locke JL, McCool BA, Weiner JL, Jones SR. Social isolation rearing increases nucleus accumbens dopamine and norepinephrine responses to acute ethanol in adulthood. Alcohol Clin Exp Res. 2014;38(11):2770-2779. https://doi.org/10.1111/acer.12555
75. Kenna GA, Haass-Koffler CL, Zywiak WH, Edwards SM, Brickley MB, Swift RM, Leggio L. Role of the α1 blocker doxazosin in alcoholism: a proofof-concept randomized controlled trial. Addict Biol. 2016;21(4):904-914. https://doi.org/10.1111/adb.12275
76. Kessler RC, Crum RM, Warner LA, Nelson CB, Schulenberg J, Anthony JC. Lifetime co-occurrence ofDSM-III-R alcohol abuse and dependence with other psychiatric disorders in the National Comorbidity Survey. Arch Gen Psychiatry. 1997;54(4):313-321. https://doi.org/10.1001/arch-psyc.1997.01830160031005
77. Khemiri L, Steensland P, Guterstam J, Beck O, Carlsson A, Franck J, Jayaram-Lindström N. The effects of the monoamine stabilizer (-)-OSU6162 on craving in alcohol dependent individuals: A human laboratory study. Eur Neuropsychopharmacol. 2015;25(12):2240-2251. https://doi.org/10.1016/j.euroneuro.2015.09.018
78. Koob GF. Alcoholism: allostasis and beyond. Alcohol Clin Exp Res. 2003;27(2):232-243. https://doi.org/10.1097/01.alc.0000057122.36127.c2
79. Koob GF. Allostatic view of motivation: implications for psychopathology. Nebr Symp Motiv. 2004;50:1-18.
80. Kranzler HR, Soyka M. Diagnosis and Pharmacotherapy of Alcohol Use Disorder: A Review. Jama. 2018;320(8):815-824. https://doi.org/10.1001/jama.2018.11406
81. Leo D, Mus L, Espinoza S, Hoener M, Sotnikova T, Gainetdinov R. Taar1-mediated modulation of presynaptic dopaminergic neurotransmission: role of D2 dopamine autoreceptors. Neuropharmacology. 2014;81:283-291.
82. Liu Y, Jean-Richard-Dit-Bressel P, Yau JO, Willing A, Prasad AA, Power JM, Killcross S, Clifford CWG, McNally GP. The Mesolimbic Dopamine Activity Signatures of Relapse to Alcohol-Seeking. J Neurosci. 2020;40(33):6409-6427. https://doi.org/10.1523/jneurosci.0724-20.2020
83. Lynch LJ, Sullivan KA, Vallender EJ, Rowlett JK, Platt DM, Miller GM. Trace amine associated receptor 1 modulates behavioral effects of ethanol. Subst Abuse. 2013;7:117-126. https://doi.org/10.4137/sart.s12110
84. Matsubara K, Fukushima S, Fukui Y. A systematic regional study of brain salsolinol levels during and immediately following chronic ethanol ingestion in rats. Brain Res. 1987;413(2):336-43. https://doi.org/10.1016/0006-8993(87)91025-0
85. McCall JG, Al-Hasani R, Siuda ER, Hong DY, Norris AJ, Ford CP, Bruchas MR. CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety. Neuron. 2015;87(3):605-620. https://doi.org/10.1016/j.neuron.2015.07.002
86. McCall JG, Siuda ER, Bhatti DL, Lawson LA, McElligott ZA, Stuber GD, Bruchas MR. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. Elife. 2017;6. https://doi.org/10.7554/eLife.18247
87. McCool BA, Chappell AM. Early social isolation in male Long-Evans rats alters both appetitive and consummatory behaviors expressed during operant ethanol self-administration. Alcohol Clin Exp Res. 2009;33(2):273-282. https://doi.org/10.1111/j.1530-0277.2008.00830.x
88. McCoy JG, Strawbridge C, McMurtrey KD, Kane VB, Ward CP. A re-evaluation of the role of tetrahydropapaveroline in ethanol consumption in rats. Brain Res Bull. 2003;60(1-2):59-65. https://doi.org/10.1016/s0361-9230(03)00018-2
89. Mejias-Aponte CA. Specificity and impact of adrenergic projections to the midbrain dopamine system. Brain Res. 2016;1641(Pt B):258-273. https://doi.org/10.1016/j.brainres.2016.01.036
90. Melchior CL, Myers RD. Preference for alcohol evoked by tetrahydropapaveroline (THP) chronically infused in the cerebral ventricle of the rat. Pharmacol Biochem Behav. 1977;7(1):19-35. 10.1016/0091-3057(77)90006-5
91. Melis M, Diana M, Enrico P, Marinelli M, Brodie MS. Ethanol and acetaldehyde action on central dopamine systems: mechanisms, modulation, and relationship to stress. Alcohol. 2009;43(7):531-539. https://doi.org/10.1016/j.alcohol.2009.05.004
92. Melis M, Spiga S, Diana M. The dopamine hypothesis of drug addiction: hypodopaminergic state. Int Rev Neurobiol. 2005;63:101-154. https://doi.org/10.1016/s0074-7742(05)63005-x
93. Mikhailova MA, Bass CE, Grinevich VP, Chappell AM, Deal AL, Bonin KD, Weiner JL, Gainetdinov RR, Budygin EA. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors. Neuroscience. 2016;333:54-64.
94. Moorman DE, Aston-Jones G. Neuroscience: Optical control of reward. Nature. 2009;458(7241):980-1. https://doi.org/10.1038/458980a
95. Morikawa H, Morrisett RA. Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs. Int Rev Neurobiol. 2010;91:235-288. https://doi.org/10.1016/s0074-7742(10)91008-8
96. Mravec B. Salsolinol, a derivate of dopamine, is a possible modulator of catecholaminergic transmission: a review of recent developments. Physiol Res. 2006;55(4):353-364.
97. Myers RD. Tetrahydroisoquinolines and alcoholism: where are we today? Alcohol Clin Exp Res. 1996;20(3):498-500. https://doi.org/10.1111/j.1530-0277.1996.tb01081.x
98. Myers RD, Oblinger MM. Alcohol drinking in the rat induced by acute intra-cerebral infusion of two tetrahydroisoquinolines and a beta-carboline. Drug Alcohol Depend. 1977;2(5-6):469-483. https://doi.org/10.1016/0376-8716(77)90047-3
99. Nakahara D, Maruyama W, Hashiguti H, Naoi M. Characterization of the in vivo action of (R)- salsolinol, an endogenous metabolite of alcohol, on serotonin and dopamine metabolism: a microdialysis study. Brain Res. 1994;644(2):226-232. https://doi.org/10.1016/0006-8993(94)91684-5
100. Nam HW, Bruner RC, Choi DS. Adenosine signaling in striatal circuits and alcohol use disorders. Mol Cells. 2013;36(3):195-202. https://doi.org/10.1007/s10059-013-0192-9
101. Naoi M, Maruyama W, Akao Y, Yi H. Dopaminederived endogenous N-methyl-(R)-salsolinol: its role in Parkinson’s disease. Neurotoxicol Teratol. 2002;24(5):579-591. https://doi.org/10.1016/s0892-0362(02)00211-8
102. Nieto SJ, Grodin EN, Aguirre CG, Izquierdo A, Ray LA. Translational opportunities in animal and human models to study alcohol use disorder. Transl Psychiatry. 2021;11(1):496. https://doi.org/10.1038/s41398-021-01615-0
103. Noble EP. Alcoholism and the dopaminergic system: a review. Addict Biol. 1996;1(4):333-348. https://doi.org/10.1080/1355621961000124956
104. Oleson EB, Talluri S, Childers SR, Smith JE, Roberts D, Bonin KD, Budygin EA. Dopamine uptake changes associated with cocaine self-administration. Neuropsychopharmacology. 2009;34(5):1174-1184.
105. Owesson-White CA, Ariansen J, Stuber GD, Cleaveland NA, Cheer JF, Wightman RM, Carelli RM. Neural encoding of cocaine-seeking behavior is coincident with phasic dopamine release in the accumbens core and shell. Eur J Neurosci. 2009;30(6):1117-1127. https://doi.org/10.1111/j.1460-9568.2009.06916.x
106. Parsons LH, Justice JB, Jr. Extracellular concentration and in vivo recovery of dopamine in the nucleus accumbens using microdialysis. J Neurochem. 1992;58(1):212-218. https://doi.org/10.1111/j.1471-4159.1992.tb09298.x
107. Patkar AA, Gopalakrishnan R, Naik PC, Murray HW, Vergare MJ, Marsden CA. Changes in plasma noradrenaline and serotonin levels and craving during alcohol withdrawal. Alcohol Alcohol. 2003;38(3):224-231. https://doi.org/10.1093/alcalc/agg055
108. Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM. Subsecond dopamine release promotes cocaine seeking. Nature. 2003;422(6932):614-618.
109. Riihioja P, Jaatinen P, Oksanen H, Haapalinna A, Heinonen E, Hervonen A. Dexmedetomidine, diazepam, and propranolol in the treatment of ethanol withdrawal symptoms in the rat. Alcohol Clin Exp Res. 1997;21(5):804-808.
110. Robinson DL, Howard EC, McConnell S, Gonzales RA, Wightman RM. Disparity between tonic and phasic ethanol-induced dopamine increases in the nucleus accumbens of rats. Alcohol Clin Exp Res. 2009;33(7):1187-1196. https://doi.org/10.1111/j.1530-0277.2009.00942.x
111. Rodd ZA, Bell RL, McQueen VK, Davids MR, Hsu CC, Murphy JM, Li TK, Lumeng L, McBride WJ. Chronic ethanol drinking by alcohol-preferring rats increases the sensitivity of the posterior ventral tegmental area to the reinforcing effects of ethanol. Alcohol Clin Exp Res. 2005;29(3):358-366. https://doi.org/10.1097/01.alc.0000156127.30983.9d
112. Rodd ZA, Bell RL, McQueen VK, Davids MR, Hsu CC, Murphy JM, Li TK, Lumeng L, McBride WJ. Prolonged increase in the sensitivity of the posterior ventral tegmental area to the reinforcing effects of ethanol following repeated exposure to cycles of ethanol access and deprivation. J Pharmacol Exp Ther. 2005;315(2):648-657. https://doi.org/10.1124/jpet.105.084350
113. Rodd ZA, Bell RL, Zhang Y, Goldstein A, Zaffaroni A, McBride WJ, Li TK. Salsolinol produces reinforcing effects in the nucleus accumbens shell of alcohol-preferring (P) rats. Alcohol Clin Exp Res. 2003;27(3):440-449. https://doi.org/10.1097/01.alc.0000056612.89957.b4
114. Rommelfanger KS, Mitrano DA, Smith Y, Weinshenker D. Light and electron microscopic localization of alpha-1 adrenergic receptor immunoreactivity in the rat striatum and ventral midbrain. Neuroscience. 2009;158(4):1530-1540. https://doi.org/10.1016/j.neuroscience.2008.11.019
115. Rossetti ZL, Longu G, Mercuro G, Hmaidan Y, Gessa GL. Biphasic effect of ethanol on noradrenaline release in the frontal cortex of awake rats. Alcohol Alcohol. 1992;27(5):477-480.
116. Rothblat DS, Rubin E, Schneider J. Effects of chronic alcohol ingestion on the mesostriatal dopamine system in the rat. Neuroscience letters. 2001;300(2):63-66.
117. Salinas AG, Mateo Y, Carlson VCC, Stinnett GS, Luo G, Seasholtz AF, Grant KA, Lovinger DM. Long-term alcohol consumption alters dorsal striatal dopamine release and regulation by D2 dopamine receptors in rhesus macaques. Neuropsychopharmacology. 2021;46(8):1432-1441. https://doi.org/10.1038/s41386-020-00938-8
118. Samson HH, Chappell AM. Effects of raclopride in the core of the nucleus accumbens on ethanol seeking and consumption: the use of extinction trials to measure seeking. Alcohol Clin Exp Res. 2004;28(4):544-549. https://doi.org/10.1097/01.alc.0000121649.81642.3f
119. Samson HH, Czachowski CL. Behavioral measures of alcohol self-administration and intake control: rodent models. Int Rev Neurobiol. 2003;54:107-143. https://doi.org/10.1016/s0074-7742(03)54004-1
120. Sango K, Maruyama W, Matsubara K, Dostert P, Minami C, Kawai M, Naoi M. Enantio-selective occurrence of (S)-tetrahydropapaveroline in human brain. Neurosci Lett. 2000;283(3):224-246. https://doi.org/10.1016/s0304-3940(00)00963-0
121. Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci. 2009;10(3):211-23. https://doi.org/10.1038/nrn2573
122. Sara SJ, Bouret S. Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron. 2012;76(1):130-141. https://doi.org/10.1016/j.neuron.2012.09.011
123. Schulteis G, Markou A, Cole M, Koob GF. Decreased brain reward produced by ethanol withdrawal. Proc Natl Acad Sci U S A. 1995;92(13):5880-5884. https://doi.org/10.1073/pnas.92.13.5880
124. Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80(1):1-27. https://doi.org/10.1152/jn.1998.80.1.1
125. Siggins GR, Roberto M, Nie Z. The tipsy terminal: presynaptic effects of ethanol. Pharmacol Ther. 2005;107(1):80-98. https://doi.org/10.1016/j.pharmthera.2005.01.006
126. Simms I, Broutet N. Congenital syphilis re-emerging. J Dtsch Dermatol Ges. 2008;6(4):269-272. https://doi.org/10.1111/j.1610-0387.2008.06490.x
127. Simpson TL, Saxon AJ, Meredith CW, Malte CA, McBride B, Ferguson LC, Gross CA, Hart KL, Raskind M. A pilot trial of the alpha-1 adrenergic antagonist, prazosin, for alcohol dependence. Alcohol Clin Exp Res. 2009;33(2):255-263. https://doi.org/10.1111/j.1530-0277.2008.00807.x
128. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150(1):76-85. https://doi.org/10.1016/0003-2697(85)90442-7
129. Söderpalm B, Ericson M. Neurocircuitry involved in the development of alcohol addiction: the dopamine system and its access points. Curr Top Behav Neurosci. 2013;13:127-161. https://doi.org/10.1007/7854_2011_170
130. Steensland P, Fredriksson I, Holst S, Feltmann K, Franck J, Schilström B, Carlsson A. The monoamine stabilizer (-)-OSU6162 attenuates voluntary ethanol intake and ethanol-induced dopamine output in nucleus accumbens. Biol Psychiatry. 2012;72(10):823-831. https://doi.org/10.1016/j.biopsych.2012.06.018
131. Steinberg EE, Keiflin R, Boivin JR, Witten IB, Deisseroth K, Janak PH. A causal link between prediction errors, dopamine neurons and learning. Nature neuroscience. 2013;16(7):966-973.
132. Szabadi E. Functional neuroanatomy of the central noradrenergic system. J Psychopharmacol. 2013;27(8):659-693. https://doi.org/10.1177/0269881113490326
133. Tang A, George MA, Randall JA, Gonzales RA. Ethanol increases extracellular dopamine concentration in the ventral striatum in C57BL/6 mice. Alcohol Clin Exp Res. 2003;27(7):1083-1089. https://doi.org/10.1097/01.alc.0000075825.14331.65
134. Thanos PK, Volkow ND, Freimuth P, Umegaki H, Ikari H, Roth G, Ingram DK, Hitzemann R. Overexpression of dopamine D2 receptors reduces alcohol self-administration. J Neurochem. 2001;78(5):1094-1103. https://doi.org/10.1046/j.1471-4159.2001.00492.x
135. Thiele TE, Marsh DJ, Ste Marie L, Bernstein IL, Palmiter RD. Ethanol consumption and resistance are inversely related to neuropeptide Y levels. Nature. 1998;396(6709):366-369. https://doi.org/10.1038/24614
136. Trzaskowska E, Puciłowski O, Dyr W, Kostowski W, Hauptmann M. Suppression of ethanol tolerance and dependence in rats treated with DSP-4, a noradrenergic neurotoxin. Drug Alcohol Depend. 1986;18(4):349-353. https://doi.org/10.1016/0376-8716(86)90098-0
137. Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 2009;324(5930):1080-1084. https://doi.org/10.1126/science.1168878
138. Tucker JA, Chandler SD, Witkiewitz K. Epidemiology of Recovery From Alcohol Use Disorder. Alcohol Res. 2020;40(3):02. https://doi.org/10.35946/arcr.v40.3.02
139. Tupala E, Hall H, Bergström K, Särkioja T, Räsänen P, Mantere T, Callaway J, Hiltunen J, Tiihonen J. Dopamine D(2)/D(3)-receptor and transporter densities in nucleus accumbens and amygdala of type 1 and 2 alcoholics. Mol Psychiatry. 2001;6(3):261-267. https://doi.org/10.1038/sj.mp.4000859
140. Valentino RJ, Van Bockstaele E. Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur J Pharmacol. 2008;583(2-3):194-203. https://doi.org/10.1016/j.ejphar.2007.11.062
141. Vankov A, Hervé-Minvielle A, Sara SJ. Response to novelty and its rapid habituation in locus coeruleus neurons of the freely exploring rat. Eur J Neurosci. 1995;7(6):1180-1187. https://doi.org/10.1111/j.1460-9568.1995.tb01108.x
142. Vazey EM, Moorman DE, Aston-Jones G. Phasic locus coeruleus activity regulates cortical encoding of salience information. Proc Natl Acad Sci USA. 2018;115(40):E9439-e9448. https://doi.org/10.1073/pnas.1803716115
143. Vena AA, Zandy SL, Cofresí RU, Gonzales RA. Behavioral, neurobiological, and neurochemical mechanisms of ethanol self-administration: A translational review. Pharmacol Ther. 2020;212:107573. https://doi.org/10.1016/j.pharmthera.2020.107573
144. Volkow ND, Wang GJ, Begleiter H, Porjesz B, Fowler JS, Telang F, Wong C, Ma Y, Logan J, Goldstein R, Alexoff D, Thanos PK. High levels of dopamine D2 receptors in unaffected members of alcoholic families: possible protective factors. Arch Gen Psychiatry. 2006;63(9):999-1008. https://doi.org/10.1001/archpsyc.63.9.999
145. Volkow ND, Wang GJ, Fowler JS, Logan J, Hitzemann R, Ding YS, Pappas N, Shea C, Piscani K. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp Res. 1996;20(9):1594-1598. https://doi.org/10.1111/j.1530-0277.1996.tb05936.x
146. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F, Baler R. Addiction: decreased rewardsensitivity and increased expectation sensitivity conspire to overwhelm the brain’s control circuit. Bioessays. 2010;32(9):748-755. https://doi.org/10.1002/bies.201000042
147. Walinder J, Balldin J, Bokstrom K, Karlsson I, Lundstrom B, Svensson TH. Clonidine suppression of the alcohol withdrawal syndrome. Drug Alcohol Depend. 1981;8(4):345-348. https://doi.org/10.1016/0376-8716(81)90043-0
148. Walker BM, Rasmussen DD, Raskind MA, Koob GF. alpha1-noradrenergic receptor antagonism blocks dependence-induced increases in responding for ethanol. Alcohol. 2008;42(2):91-97. https://doi.org/10.1016/j.alcohol.2007.12.002
149. Weinshenker D, Rust NC, Miller NS, Palmiter RD. Ethanol-associated behaviors of mice lacking norepinephrine. J Neurosci. 2000;20(9):3157-3164. 10.1523/jneurosci.20-09-03157.2000
150. Weiss F, Parsons LH, Schulteis G, Hyytiä P, Lorang MT, Bloom FE, Koob GF. Ethanol selfadministration restores withdrawal-associated deficiencies in accumbal dopamine and 5-hydroxytryptamine release in dependent rats. J Neurosci. 1996;16(10):3474-3485. https://doi.org/10.1523/jneurosci.16-10-03474.1996
151. Weiss F, Porrino LJ. Behavioral neurobiology of alcohol addiction: recent advances and challenges. J Neurosci. 2002;22(9):3332-3337. https://doi.org/10.1523/jneurosci.22-09-03332.2002
152. West CH, Boss-Williams KA, Ritchie JC, Weiss JM. Reprint of: Locus coeruleus neuronal activity determines proclivity to consume alcohol in a selectively-bred line of rats that readily consumes alcohol. Alcohol. 2016;50:91-105. https://doi.org/10.1016/j.alcohol.2016.01.001
153. West MW, Biggs TA, Tavares E, Lankford MF, Myers RD. Drinking patterns in genetic low-alcohol- drinking (LAD) rats after systemic cyanamide and cerebral injections of THP or 6-OHDA. Alcohol. 1998;15(3):239-247. https://doi.org/10.1016/s0741-8329(97)00126-2
154. Wightman RM, Robinson DL. Transient changes in mesolimbic dopamine and their association with ‘reward’. J Neurochem. 2002;82(4):721-735. https://doi.org/10.1046/j.1471-4159.2002.01005.x
155. Wightman RM, Zimmerman JB. Control of dopamine extracellular concentration in rat striatum by impulse flow and uptake. Brain Res Brain Res Rev. 1990;15(2):135-144. https://doi.org/10.1016/0165-0173(90)90015-g
156. Wise RA. Maximization of ethanol intake in the rat. Adv Exp Med Biol. 1975;59:279-294. https://doi.org/10.1007/978-1-4757-0632-1_19
157. Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA, Brodsky M, Yizhar O, Cho SL, Gong S, Ramakrishnan C, Stuber GD, Tye KM, Janak PH, Deisseroth K. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron. 2011;72(5):721-733. https://doi.org/10.1016/j.neuron.2011.10.028
158. Woodward JJ. Ethanol and NMDA receptor signaling. Crit Rev Neurobiol. 2000;14(1):69-89. https://doi.org/10.1080/08913810008443548
159. Wu R, Liu J, Wang K, Huang Y, Zhang Y, Li JX. Effects of a trace amine-associated receptor 1 agonist RO 5263397 on ethanol-induced behavioral sensitization. Behav Brain Res. 2020;390:112641. https://doi.org/10.1016/j.bbr.2020.112641
160. Xie G, Kresimir K, Ye J-H. Salsolinol modulation of dopamine neurons. Frontiers Behav Neurosci. 2013; 7(52):1-7. https://doi.org/10.3389/fnbeh.2013.00052160
161. Ye L, Orynbayev M, Zhu X, Lim EY, Dereddi RR, Agarwal A, Bergles DE, Bhat MA, Paukert M. Ethanol abolishes vigilance-dependent astroglia network activation in mice by inhibiting norepinephrine release. Nat Commun. 2020;11(1):6157. https://doi.org/10.1038/s41467-020-19475-5
162. Zimatkin SM, Deitrich RA. Ethanol metabolism in the brain. Addict Biol. 1997;2(4):387-400. https://doi.org/10.1080/13556219772444
Рецензия
Для цитирования:
Гриневич В.П., Немец В.В., Крупицкий Е.М., Гайнетдинов Р.Р., Будыгин Е.А. Роль дофамина и норадреналина в алкоголь-зависимом поведении: от корреляций к механизмам. Обозрение психиатрии и медицинской психологии имени В.М.Бехтерева. 2022;56(3):13-29. https://doi.org/10.31363/2313-7053-2022-56-3-13-29
For citation:
Grinevich V.P., Nemets V.V., Krupitsky E.M., Gainetdinov R.R., Budygin E.A. Dopamine and norepinephrine role in alcohol-addictive behavior: from correlations to mechanisms. V.M. BEKHTEREV REVIEW OF PSYCHIATRY AND MEDICAL PSYCHOLOGY. 2022;56(3):13-29. (In Russ.) https://doi.org/10.31363/2313-7053-2022-56-3-13-29