Inflammation-related genes and their role in the pathogenesis of schizophrenia: current scientific evidence
https://doi.org/10.31363/2313-7053-2025-4-2-1099
Abstract
Objective. The aim of this analytical review was to search, analyze, and summarize data on associations of inflammatory candidate genes and their effect on the pathogenesis and clinical manifestations of schizophrenia. Materials and Methods. A comprehensive search was conducted for original research articles, systematic reviews, and meta-analyses in the databases Google Scholar, PubMed, and eLIBRARY.ru. The inclusion criteria encompassed publications from January 1, 2017, to December 31, 2024, without language restrictions, focusing on the genetic aspects of inflammation in the context of schizophrenia. Results. The review confirmed the significant role of inflammatory genetic associations in the pathogenesis of schizophrenia. Polymorphisms in genes encoding pro- and anti-inflammatory molecules (IL6, IL10, IL1B, IL28B, TNF-α, HLA, VEGF-A, NF-κB) were found to be associated with disease risk, clinical symptoms, and brain structure alterations. Additionally, genetic regulation of inflammatory processes appears to contribute to impaired neuroplasticity, blood–brain barrier permeability, and oxidative stress in schizophrenia. Conclusion. Our review highlights the critical role of genetic associations related to inflammatory mechanisms in the pathogenesis of schizophrenia. A hereditary predisposition to immune response imbalance may influence the development, severity, and course of the disorder.
About the Authors
A. P. OtmakhovRussian Federation
Andrey P. Otmakhov
Saint Petersburg
L. R. Bakirov
Russian Federation
Linar R. Bakirov
Ufa
N. G. Neznanov
Russian Federation
Nikolai G. Neznanov
Saint Petersburg
A. R. Asadullin
Russian Federation
Azat R. Asadullin
Ufa; Saratov
References
1. Abdrakhmanova AE, Gilmanov AZh, Galeeva EKh, Efremov IS, Asadullin AR. Neuroinflammation and inflammatory markers in peripheral blood in anxiety and depressive disorders (literature review). Psikhicheskoe zdorov'e. 2022;17(6):55-64. (In Russ.). https://doi.org/10.25557/2074-014X.2022.06.55-64
2. Golimbet VE, Klyushnik TP. Molecular-genetic and immunological aspects of the formation of psychopathological symptoms in schizophrenia. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2022;122(10):66-71. (In Russ.). https://doi.org/10.17116/jnevro202212210166
3. Mikhailova VA, Plakunova VV, Lezheiko TV, Kolesina NYu, Golimbet VE. The relationship between tnf-α gene polymorphism rs1800629 and negative symptoms factors in schizophrenia. Meditsinskaya genetika. 2022;21(8):20-22. (In Russ.). https://doi.org/10.25557/2073-7998.2022.08.20-22
4. Ahmad SF, Zoheir KMA, Ansari MA, Nadeem A, Bakheet SA, Al-Ayadhi LY, et al. Dysregulation of Th1, Th2, Th17, and T regulatory cell-related transcription factor signaling in children with autism. Mol Neurobiol. 2017;54:4390–4400. https://doi.org/10.1007/s12035-016-9977-0
5. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176(6):1248-1264. https://doi.org/10.1016/j.cell.2019.01.021
6. Berbers RM, van der Wal MM, van Montfrans JM, Ellerbroek PM, Dalm VA, van Hagen PM, et al. Chronically activated T-cells retain their inflammatory properties in common variable immunodeficiency. J Clin Immunol. 2021;41:1621-1632. https://doi.org/10.1007/s10875-021-01084-6
7. Bishop JR, Zhang L, Lizano P. Inflammation subtypes and translating inflammation-related genetic findings in schizophrenia and related psychoses: a perspective on pathways for treatment stratification and novel therapies. Harv Rev Psychiatry. 2022;30(1):59-70. https://doi.org/10.1097/HRP.0000000000000321
8. Bleich A, Brown SL, Kahn R, van Praag HM. The role of serotonin in schizophrenia. Schizophr Bull. 1988;14(2):297-315. https://doi.org/10.1093/schbul/14.2.297
9. Boukouaci W, Lajnef M, Richard JR, Wu CL, Bouassida J, Rafik I, et al. HLA-E circulating and genetic determinants in schizophrenia and bipolar disorder. Sci Rep. 2021;11(1):20260. https://doi.org/10.1038/s41598-021-99732-9
10. Castañeda-Cabral JL, Beas-Zárate C, Rocha-Arrieta LL, Orozco-Suárez SA, Alonso-Vanegas M, Guevara-Guzmán R, et al. Increased protein expression of VEGF-A, VEGF-B, VEGF-C and their receptors in the temporal neocortex of pharmacoresistant temporal lobe epilepsy patients. J Neuroimmunol. 2019;328:68-72. https://doi.org/10.1016/j.jneuroim.2018.12.007
11. Choi KY, Choo JM, Lee YJ, Lee Y, Cho CH, Kim SH, Lee HJ. Association between the IL10 rs1800896 polymorphism and tardive dyskinesia in schizophrenia. Psychiatry Investig. 2020;17(10):1031. https://doi.org/10.30773/pi.2020.0191
12. Comer AL, Carrier M, Tremblay MÈ, Cruz-Martín A. The inflamed brain in schizophrenia: the convergence of genetic and environmental risk factors that lead to uncontrolled neuroinflammation. Front Cell Neurosci. 2020;14:274. https://doi.org/10.3389/fncel.2020.00274
13. Debnath M, Berk M, Leboyer M, Tamouza R. The MHC/HLA gene complex in major psychiatric disorders: emerging roles and implications. Curr Behav Neurosci Rep. 2018;5:179-188. https://doi.org/10.1007/s40473-018-0155-8
14. Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol. 2018;18(5):325-339. https://doi.org/10.1038/nri.2017.143
15. Dickerson F, Stallings C, Origoni A, Boronow J, Yolken R. C-reactive protein is associated with the severity of cognitive impairment but not of psychiatric symptoms in individuals with schizophrenia. Schizophr Res. 2007;93(1-3):261-265. https://doi.org/10.1016/j.schres.2007.03.022
16. Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative stress‐related mechanisms in schizophrenia pathogenesis and new treatment perspectives. Oxid Med Cell Longev. 2021;2021:8881770. https://doi.org/10.1155/2021/8881770
17. Fan X, Pristach C, Liu EY, Freudenreich O, Henderson DC, Goff DC. Elevated serum levels of C-reactive protein are associated with more severe psychopathology in a subgroup of patients with schizophrenia. Psychiatry Res. 2007;149(1-3):267-271. https://doi.org/10.1016/j.psychres.2006.07.011
18. Fillman SG, Weickert TW, Lenroot RK, Catts SV, Bruggemann JM, Catts VS, et al. Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca’s area volume. Mol Psychiatry. 2016;21(8):1090-1098. https://doi.org/10.1038/mp.2015.90
19. Gallego JA, Blanco EA, Husain-Krautter S, Fagen EM, Moreno-Merino P, del Ojo-Jiménez JA, et al. Cytokines in cerebrospinal fluid of patients with schizophrenia spectrum disorders: New data and an updated meta-analysis. Schizophr Res. 2018;202:64-71. https://doi.org/10.1016/j.schres.2018.07.019
20. Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018;359(6376):693-697. https://doi.org/10.1126/science.aad646
21. Gnanasekaran A, Kelchen MN, Brogden NK, Smith RM. Vascular endothelial growth factor (VEGF) expression and neuroinflammation is increased in the frontopolar cortex of individuals with autism spectrum disorder. 2019. https://doi.org/10.1101/627083
22. Golimbet V, Lezheiko T, Mikhailova V, Korovaitseva G, Kolesina N, Plakunova V, et al. A study of the association between polymorphisms in the genes for interleukins IL-6 and IL-10 and negative symptoms subdomains in schizophrenia. Indian J Psychiatry. 2022;64(5):484-488. https://doi.org/10.4103/indianjpsychiatry.indianjpsychiatry_212_22
23. Halstead S, Siskind D, Amft M, Wagner E, Yakimov V, Liu Z, et al. Alteration patterns of peripheral concentrations of cytokines and associated inflammatory proteins in acute and chronic stages of schizophrenia: a systematic review and network meta-analysis. Lancet Psychiatry. 2023;10(4):260-271. https://doi.org/10.1016/S2215-0366(23)00025-1
24. Haque R, Kim Y, Park K, Jang H, Kim SY, Lee H, et al. Altered distributions in circulating follicular helper and follicular regulatory T cells accountable for imbalanced cytokine production in multiple sclerosis. Clin Exp Immunol. 2021;205(1):75-88. https://doi.org/10.1111/cei.13596
25. Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res. 2011;21(2):223-244. https://doi.org/10.1038/cr.2011.13
26. Hudson ZD, Miller BJ. Meta-analysis of cytokine and chemokine genes in schizophrenia. Clin Schizophr Relat Psychoses. 2018;12(3):121-129B. https://doi.org/10.3371/csrp.humi.070516
27. Jacomb I, Stanton C, Vasudevan R, Powell H, O'Donnell M, Lenroot R, et al. C-reactive protein: higher during acute psychotic episodes and related to cortical thickness in schizophrenia and healthy controls. Front Immunol. 2018;9:2230. https://doi.org/10.3389/fimmu.2018.02230
28. Javitt DC. Glutamatergic theories of schizophrenia. Isr J Psychiatry. 2010;47(1):4.
29. Jayaraman A, Htike TT, James R, Picon C, Reynolds R. TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer's disease hippocampus. Acta Neuropathol Commun. 2021;9:1-21. https://doi.org/10.1186/s40478-021-01264-w
30. Jin M, Günther R, Akgün K, Hermann A, Ziemssen T. Peripheral proinflammatory Th1/Th17 immune cell shift is linked to disease severity in amyotrophic lateral sclerosis. Sci Rep. 2020;10(1):5941. https://doi.org/10.1038/s41598-020-62756-8
31. Kadasah S, Arfin M, Rizvi S, Al-Asmari M, Al-Asmari A. Tumor necrosis factor-α and-β genetic polymorphisms as a risk factor in Saudi patients with schizophrenia. Neuropsychiatr Dis Treat. 2017;1081-1088. https://doi.org/10.2147/NDT.S131144
32. Kang N, Shin W, Jung S, Bang M, Lee SH. The effect of TNF-alpha polymorphism on white matter structures and memory function in patients with schizophrenia: A pilot study. Psychiatry Investig. 2022;19(12):1027. https://doi.org/10.30773/pi.2021.0326
33. Kappelmann N, Khandaker GM, Dal H, Stochl J, Kosidou K, Jones PB, et al. Systemic inflammation and intelligence in early adulthood and subsequent risk of schizophrenia and other non-affective psychoses: A longitudinal cohort and co-relative study. Psychol Med. 2019;49(2):295-302. https://doi.org/10.1017/S0033291718000831
34. Kaur H, Ghorai SM. Role of cytokines as immunomodulators. In: Immunomodulators and Human Health. Singapore: Springer Nature Singapore; 2022. p. 371-414. https://doi.org/10.1007/978-981-16-6379-6_13
35. Kerschensteiner M, Meinl E, Hohlfeld R. Neuro-immune crosstalk in CNS diseases. Neuroscience. 2009;158(3):1122-1132. https://doi.org/10.1016/j.neuroscience.2008.09.009
36. Kirkpatrick B, Miller BJ. Inflammation and schizophrenia. Schizophr Bull. 2013;39(6):1174-1179. https://doi.org/10.1093/schbul/sbt141
37. Koistinaho J, Koskuvi M, Pörsti E, Wu YC, Trontti K, McQuade A, et al. Genetic contribution to microglial activation in schizophrenia. 2022. https://doi.org/10.21203/rs.3.rs-1980131/v1
38. Korovaitseva GI, Gabaeva MV, Oleichik IV, Golimbet VE. The effect of INDEL polymorphism of the human leukocyte antigen G (HLA-G) and the season of birth on the risk of schizophrenia and its clinical features. Russ J Genet. 2021;57(2):221-226. https://doi.org/10.1134/S102279542102006X
39. Kustrimovic N, Comi C, Magistrelli L, E Rasini, Legnaro M, Bombelli R, et al. Parkinson’s disease patients have a complex phenotypic and functional Th1 bias: cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naive and drug-treated patients. J Neuroinflammation. 2018;15:1-17. https://doi.org/10.1186/s12974-018-1248-8
40. Lee BH, Hong JP, Hwang JA, Ham BJ, Na KS, Kim WJ, et al. Alterations in plasma vascular endothelial growth factor levels in patients with schizophrenia before and after treatment. Psychiatry Res. 2015;228(1):95-99. https://doi.org/10.1016/j.psychres.2015.04.020
41. Leza JC, García-Bueno B, Bioque M, Arango C, Parellada M, Do K, et al. Inflammation in schizophrenia: a question of balance. Neurosci Biobehav Rev. 2015;55:612-626. https://doi.org/10.1016/j.neubiorev.2015.05.014
42. Li W, Luo Y, Xu H, Ma Q, Yao Q. Imbalance between T helper 1 and regulatory T cells plays a detrimental role in experimental Parkinson’s disease in mice. J Int Med Res. 2021;49(4):0300060521998471. https://doi.org/10.1177/030006052199847
43. Lingappan K. NF-κB in oxidative stress. Curr Opin Toxicol. 2018;7:81-86. https://doi.org/10.1016/j.cotox.2017.11.002
44. Liu B, Shao Y, Fu R. Current research status of HLA in immune‐related diseases. Immun Inflamm Dis. 2021;9(2):340-350. https://doi.org/10.1002/iid3.416
45. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2(1):1-9. https://doi.org/10.1038/sigtrans.2017.23
46. Lizano P, Lutz O, Ling G, Padmanabhan J, Tandon N, Sweeney J, et al. VEGFA gene variation influences hallucinations and frontotemporal morphology in psychotic disorders: a B-SNIP study. Transl Psychiatry. 2018;8(1):215. https://doi.org/10.1038/s41398-018-0271-y
47. Long J, Huang G, Liang W, Liang B, Chen Q, Xie J, et al. The prevalence of schizophrenia in mainland China: evidence from epidemiological surveys. Acta Psychiatr Scand. 2014;130(4):244-256. https://doi.org/10.1111/acps.12296
48. Lv H, Guo M, Guo C, He K. The interrelationships between cytokines and schizophrenia: a systematic review. Int J Mol Sci. 2024;25(15):8477. https://doi.org/10.3390/ijms25158477
49. Matern BM, Olieslagers TI, Voorter CE, Groeneweg M, Tilanus MGJ. Insights into the polymorphism in HLA‐DRA and its evolutionary relationship with HLA haplotypes. HLA. 2020;95(2):117-127. https://doi.org/10.1111/tan.13730
50. Melamud MM, Bobrik DV, Brit PI, Efremov IS, Buneva VN, Nevinsky GA, et al. Biochemical, hematological, inflammatory, and gut permeability biomarkers in patients with alcohol withdrawal syndrome with and without delirium tremens. J Clin Med. 2024;13(10):2776. https://doi.org/10.3390/jcm13102776
51. Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2):455-467. PMID: 30173249.
52. Mitchell JP, Carmody RJ. NF-κB and the transcriptional control of inflammation. Int Rev Cell Mol Biol. 2018;335:41-84. https://doi.org/10.1016/bs.ircmb.2017.07.007
53. Mohammadi A, Rashidi E, Amooeian VG. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res. 2018;265:25-38. https://doi.org/10.1016/j.psychres.2018.04.036
54. Mongan D, Ramesar M, Föcking M, Cannon M, Cotter D, et al. Role of inflammation in the pathogenesis of schizophrenia: A review of the evidence, proposed mechanisms and implications for treatment. Early Interv Psychiatry. 2020;14(4):385-397. https://doi.org/10.1111/eip.12859
55. Munkvad I, Fog R, Randrup A. Dopamine and schizophrenia. Clin Physiol. 1981;1:102-107. https://doi.org/10.1111/j.1475-097X.1981.tb00948.x
56. Murphy CE, Lawther AJ, Webster MJ, Asai M, Kondo Y, Matsumoto M, et al. Nuclear factor kappa B activation appears weaker in schizophrenia patients with high brain cytokines than in non-schizophrenic controls with high brain cytokines. J Neuroinflammation. 2020;17:1-13. https://doi.org/10.1186/s12974-020-01890-6
57. Murphy CE, Walker AK, O’Donnell M, Galletly C, Lloyd AR, Liu D, et al. Peripheral NF-κB dysregulation in people with schizophrenia drives inflammation: putative anti-inflammatory functions of NF-κB kinases. Transl Psychiatry. 2022;12(1):21. https://doi.org/10.1038/s41398-021-01764-2
58. Müller N. Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr Bull. 2018;44(5):973-982. https://doi.org/10.1093/schbul/sby024
59. Müller N, Weidinger E, Leitner B, Schwarz MJ. The role of inflammation in schizophrenia. Front Neurosci. 2015;9:372. https://doi.org/10.3389/fnins.2015.00372
60. Oberstein TJ, Taha L, Spitzer P, Hellstern J, Herrmann M, Kornhuber J, et al. Imbalance of circulating Th17 and regulatory T cells in Alzheimer’s disease: a case control study. Front Immunol. 2018;9:1213. https://doi.org/10.3389/fimmu.2018.01213
61. Pantelis C, Yücel M, Wood SJ, McGorry PD, Velakoulis D. Early and late neurodevelopmental disturbances in schizophrenia and their functional consequences. Aust N Z J Psychiatry. 2003;37(4):399-406. https://doi.org/10.1046/j.1440-1614.2003.01193.x
62. Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE et al. Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2. Int J Mol Sci. 2018;19(4):1264. https://doi.org/10.3390/ijms19041264
63. Pillai A, Howell KR, Ahmed AO, Weinberg D, Allen KM, Bruggemann J et al. Association of serum VEGF levels with prefrontal cortex volume in schizophrenia. Mol Psychiatry. 2016;21(5):686-692. https://doi.org/10.1038/mp.2015.96
64. Pong S, Karmacharya R, Sofman M, Bishop JR, Lizano P. The role of brain microvascular endothelial cell and blood-brain barrier dysfunction in schizophrenia. Complex Psychiatry. 2020;6(1-2):30-46. https://doi.org/10.1159/000511552
65. Rampino A, Annese T, Torretta S, Tamma R, Falcone RM, Ribatti D. Involvement of vascular endothelial growth factor in schizophrenia. Neurosci Lett. 2021;760:136093. https://doi.org/10.1016/j.neulet.2021.136093
66. Requena-Ocaña N, Flores-Lopez M, Papaseit E, García-Marchena N, Ruiz JJ, Ortega-Pinazo J, et al. Vascular endothelial growth factor as a potential biomarker of neuroinflammation and frontal cognitive impairment in patients with alcohol use disorder. Biomedicines. 2022;10(5):947. https://doi.org/10.3390/biomedicines10050947
67. Rizzo FR, Musella A, De Vito F, Fresegna D, Bullitta S, Vanni V et al. Tumor necrosis factor and interleukin‐1β modulate synaptic plasticity during neuroinflammation. Neural Plast. 2018;2018:8430123. https://doi.org/10.1155/2018/8430123
68. Robinson J, Guethlein LA, Cereb N, Yang SY, Norman PJ, Marsh SG et al. Distinguishing functional polymorphism from random variation in the sequences of >10,000 HLA-A,-B and -C alleles. PLoS Genet. 2017;13(6):e1006862. https://doi.org/10.1371/journal.pgen.1006862
69. Saha S, Chant D, Welham J, McGrath J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2005;2(5):e141. https://doi.org/10.1371/journal.pmed.0020141
70. Sahbaz C, Zibandey N, Kurtulmus A, Duran Y, Gokalp M, Kırpınar I et al. Reduced regulatory T cells with increased proinflammatory response in patients with schizophrenia. Psychopharmacology. 2020;237:1861-1871. https://doi.org/10.1007/s00213-020-05504-0
71. Saoud H, Aflouk Y, Afia AB, Gaha L, Jrad BBH. Association of VEGF-A and KDR polymorphisms with the development of schizophrenia. Hum Immunol. 2022;83(6):528-53. https://doi.org/10.1016/j.humimm.2022.04.003
72. Shivakumar V, Debnath M, Venugopal D, Rajasekaran A, Kalmady SV, Subbanna M et al. Influence of correlation between HLA-G polymorphism and Interleukin-6 (IL6) gene expression on the risk of schizophrenia. Cytokine. 2018;107:59-64. https://doi.org/10.1016/j.cyto.2017.11.016
73. Shivakumar V, Sreeraj VS, Subbanna M, Kalmady SV, Amaresha AC, Narayanaswamy JC et al. Differential impact of interleukin-6 promoter gene polymorphism on hippocampal volume in antipsychotic-naïve schizophrenia patients. Indian J Psychiatry. 2020;62(1):36-42. https://doi.org/10.4103/psychiatry.IndianJPsychiatry_486_19
74. Solleiro-Villavicencio H, Rivas-Arancibia S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+ T cells in neurodegenerative diseases. Front Cell Neurosci. 2018;12:114. https://doi.org/10.3389/fncel.2018.00114
75. Stein L, Wise CD. Possible etiology of schizophrenia: Progressive damage to the noradrenergic reward system by 6-hydroxydopamine. Science. 1971;171(3975):1032-1036. https://doi.org/10.1126/science.171.3975.103
76. Suchanek-Raif R, Raif P, Kowalczyk M, Paul-Samojedny M, Kucia K, Merk W et al. Promoter polymorphisms of TNF-α gene as a risk factor for schizophrenia. Arch Med Res. 2018;49(4):248-254. https://doi.org/10.1016/j.arcmed.2018.09.007
77. Swain SA, Sarangi P, Rattan R, Sahu PK, Lamare AA. A study of nuclear factor-kappa B1 gene polymorphism types in schizophrenia patients and their correlation with disease severity. Cureus. 2022;14(4):e24401. https://doi.org/10.7759/cureus.24401
78. Tamouza R, Krishnamoorthy R, Leboyer M. Understanding the genetic contribution of the human leukocyte antigen system to common major psychiatric disorders in a world pandemic context. Brain Behav Immun. 2021;91:731-739. https://doi.org/10.1016/j.bbi.2020.09.033
79. Trovão N, Prata J, VonDoellinger O, Santos S, Barbosa M, Coelho R et al. Peripheral biomarkers for first-episode psychosis—opportunities from the neuroinflammatory hypothesis of schizophrenia. Psychiatry Investig. 2019;16(3):177. https://doi.org/10.30773/pi.2018.12.19.1
80. Upthegrove R, Khandaker GM. Cytokines, oxidative stress and cellular markers of inflammation in schizophrenia. Neuroinflammation Schizophr. 2020;49-66. https://doi.org/10.1007/7854_2018_88
81. Volk DW, Moroco AE, Roman KM, Edelson JR, Lewis DA et al. The role of the nuclear factor-κB transcriptional complex in cortical immune activation in schizophrenia. Biol Psychiatry. 2019;85(1):25-34. https://doi.org/10.1016/j.biopsych.2018.06.015
82. Wang M, Claesson MH. Classification of human leukocyte antigen (HLA) supertypes. Immunoinformatics. 2014;309-317. https://doi.org/10.1007/978-1-4939-1115-8_17
83. Wiszniak S, Schwarz Q. Exploring the intracrine functions of VEGF-A. Biomolecules. 2021;11(1):128. https://doi.org/10.3390/biom11010128
84. Wong-Guerra M, Calfio C, Maccioni RB, Rojo LE. Revisiting the neuroinflammation hypothesis in Alzheimer’s disease: A focus on the druggability of current targets. Front Pharmacol. 2023;14:1161850. https://doi.org/10.3389/fphar.2023.1161850
85. Wu EQ, Shi L, Birnbaum H, Hudson T, Kessler R et al. Annual prevalence of diagnosed schizophrenia in the USA: a claims data analysis approach. Psychol Med. 2006;36(11):1535-1540. https://doi.org/10.1017/S0033291706008191
86. Xavier RM, Vorderstrasse A. Genetic basis of positive and negative symptom domains in schizophrenia. Biol Res Nurs. 2017;19(5):559-575. https://doi.org/10.1177/1099800417715907
87. Xu J, Li J, Xiao K, Zou S, Yan P, Xie X et al. Dynamic changes in human HLA‐DRA gene expression and Th cell subsets in sepsis: Indications of immunosuppression and associated outcomes. Scand J Immunol. 2020;91(1):e12813. https://doi.org/10.1111/sji.12813
88. Yang QQ, Zhou JW. Neuroinflammation in the central nervous system: Symphony of glial cells. Glia. 2019;67(6):1017-1035. https://doi.org/10.1002/glia.23571
89. Yu S, Qu Y, Du Z, Ou M, Lu R, Yuan J et al. The expression of immune related genes and potential regulatory mechanisms in schizophrenia. Schizophr Res. 2024;267:507-518. https://doi.org/10.1016/j.schres.2023.11.007
90. Yu YQ, Wang H. Imbalance of Th1 and Th2 cytokines and stem cell therapy in pathological pain. CNS Neurol Disord Drug Targets. 2024;23(1):88-101. https://doi.org/10.2174/1871527322666221226145828
91. Yuan J, Amin P, Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci. 2019;20(1):19-33. https://doi.org/10.1038/s41583-018-0093-1
92. Zhang Y, Fang X, Fan W, Tang W, Cai J, Song L et al. Interaction between BDNF and TNF-α genes in schizophrenia. Psychoneuroendocrinology. 2018;89:1-6. https://doi.org/10.1016/j.psyneuen.2017.12.024
Review
For citations:
Otmakhov A.P., Bakirov L.R., Neznanov N.G., Asadullin A.R. Inflammation-related genes and their role in the pathogenesis of schizophrenia: current scientific evidence. V.M. BEKHTEREV REVIEW OF PSYCHIATRY AND MEDICAL PSYCHOLOGY. (In Russ.) https://doi.org/10.31363/2313-7053-2025-4-2-1099






















