Preview

Обозрение психиатрии и медицинской психологии имени В.М.Бехтерева

Расширенный поиск

Перспективность применения нелинейной стимуляционной терапии в лечении травматических повреждений головного мозга и поддержании когнитивных функций у пожилых лиц

https://doi.org/10.31363/2313-7053-2018-2-36-43

Аннотация

Когнитивное снижение характеризует нормальное физиологическое старение и усугубляется при развитии связанной с возрастом нейродегенеративной патологии и травматическом повреждении головного мозга. В обзоре анализируются широко дискутируемые в научной литературе немедикаментозные методы реабилитации пациентов с ЧМТ и пожилых лиц, страдающих от когнитивного снижения, включая парадигму обогащения среды, когнитивные и физические тренировки, различные виды стимуляционной терапии и их недостатки. Отдельное внимание уделено преимуществам фрактальной стимуляции головного мозга сложноструктурированными оптическими сигналами и сенсорными стимулами другой модальности. Предполагается, что использование новых подходов к нейрореабилитации, повышающих потенциал нейропластичности, также позволит усилить терапевтическое и обучающее воздействие любых других методов тренировок и лечения головного мозга.

Об авторе

Марина Владимировна Зуева
ФГБУ «Московский НИИ глазных болезней им. Гельмгольца» Минздрава России
Россия
доктор биологических наук, профессор, начальник отдела клинической физиологии зрения



Список литературы

1. Alwis D.S., Rajan R. Environmental enrichment and the sensory brain: the role of enrichment in remediating brain injury // Front. Syst. Neurosci. — 2014. — Vol. 8. — P. 156.

2. Anderson ML, Sisti HM, Curlik DM, Shors TJ. Associative learning increases adult neurogenesis during a critical period // Eur. J. Neurosci. — 2011. — Vol. 33, № 1. — P. 175–181.

3. Barlow J.S. Rhythmic activity induced by photic stimulation in relation to intrinsical activity of the brain in man // Electroencephalogr. Clin. Neurophysiol. — 1960. — Vol. 12. — P. 317-326.

4. Baroncelli L., Bonaccorsi J., Milanese M. et al. Enriched experience and recovery from amblyopia in adult rats: impact of motor, social and sensory components // Neuropharmacol. — 2012. — Vol. 62. — P. 2388-2397.

5. Björkdahl A., Akerlund E., Svensson S., Esbjörnsson E. A randomized study of computerized working memory training and effects on functioning in everyday life for patients with brain injury // Brain Inj. — 2013. — Vol. 27. — P. 1658-1665.

6. Blumenfeld-Katzir T., Pasternak O., Dagan M., Assaf Y. Diffusion MRI of structural brain plasticity induced by a learning and memory task // PloS One. — 2011. — Vol. 6, № 6. — P. e20678.

7. Bonnì S., Mastropasqua C., Bozzali M., Caltagirone C., Koch G. Teta burst stimulation improves visuospatial attention in a patient with traumatic brain injury // Neurological Sciences. — 2013. — Vol. 34, № 11. — P. 2053–2056.

8. Burzynska A.Z., Preuschhof C., Backman L. et al. Age-related differences in white matter microstructure: region-specifc patterns of diffusivity // NeuroImage.—2010.—Vol. 49, № 3.—P. 2104–2112.

9. Cameron H.A., McKay R.D. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus // J. Comp. Neurol. — 2001. — Vol. 435, № 4. — P. 406–417.

10. Cappa S.F., Benke T., Clarke S. et al. EFNS guidelines on cognitive rehabilitation: report of an EFNS task force // Eur. J. Neurol. — 2003. — Vol. 10. — P. 11-23.

11. Carcea I., Froemke R.C. Cortical Plasticity, Excitatory–Inhibitory Balance, and Sensory Perception // Prog. Brain Res. — 2013. — Vol. 207. — P. 65–90.

12. Castellanos N.P., Paúl N., Ordóñez V.E. et al. Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury // Brain. — 2010. — Vol. 133. — P. 2365 — 2381.

13. Cicerone K.D., Dahlberg C., Malec J.F. et al. Evidence-based cognitive rehabilitation: updated review of the literature from 1998 through 2002 // Arch. Phys. Med. Rehabil. — 2005. — Vol. 86, № 8. — P. 1681-1892.

14. Cicerone K.D., Langenbahn D.M., Braden C. et al. Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008 // Arch. Phys. Med. Rehabil. — 2011. — Vol. 92, № 4. — P. 519-530.

15. Curlik D.M. 2nd, Shors T.J. Training your brain: Do mental and physical (MAP) training enhance cognition through the process of neurogenesis in the hippocampus? // Neuropharmacology. — 2013. — V ol. 64, № 1. — P. 506–514.

16. Dauwels J., Srinivasan K., Reddy M.R. et al. Slowing and Loss of Complexity in Alzheimer’s EEG: Two Sides of the Same Coin? // Int. J. Alzheim. Dis.—2011.—Vol. 2011, Art ID 539621, 10 pages.

17. de Villers-Sidani E, Merzenich MM. Lifelong plasticity in the rat auditory cortex: basic mechanisms and role of sensory experience // Prog. Brain Res. — 2011. — Vol. 191. — P. 119–131.

18. Dumitriu D., Hao J., Hara Y. et al. Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment // J. Neurosci. — 2010. — Vol. 30, № 22. — P. 7507–7515.

19. Ferreri F., Rossini P.M. TMS and TMS-EEG techniques in the study of the excitability, connectivity, and plasticity of the human motor cortex // Rev. Neurosci.—2013.—Vol. 24, №4.—P. 431–442.

20. Fink A., Grabner R.H., Benedek M., Neubauer A.C. Divergent thinking training is related to frontal electroencephalogram alpha synchronization // Eur. J. Neurosci. — 2006. — Vol. 23. — P. 2241–2246.

21. Galetto V., Sacco K. Neuroplastic Changes Induced by Cognitive Rehabilitation in Traumatic Brain Injury: A Review // Neurorehabil. Neural. Repair. — 2017. — Vol. 31, № 9. — P. 800-813.

22. Gilbert C.D., Li W. Adult visual cortical plasticity // Neuron. – 2012. — Vol. 75, № 2. — p. 250-264. doi: 10.1016/j.neuron.2012.06.030.

23. Goldberger A.L., Amaral L.A.N., Hausdor L.M. et al. Fractal dynamics in physiology: Alterations with disease and aging // Proc. Nat. Acad. Sci. USA. — 2002. — Vol. 99. — P. 2466 — 2472.

24. Goldstein F.C., Levin H.S. Cognitive outcome afer mild and moderate traumatic brain injury in older adults // J. Clin. Exp. Neuropsychol. — 2001. — Vol. 23. — P. 739-753.

25. Hall R.C., Hall R.C., Chapman M.J. Defnition, diagnosis, and forensic implications of postconcussional syndrome // Psychosomatics. -2005. — Vol. 46. — P. 195-202.

26. Hausdorff J.M., Peng C.K., Ladin Z. et al. Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J. Appl. Physiol. 1995; 78: 349.

27. Hebb D.O. Te organization of behavior. New York: Wiley, 1949.

28. Hedman A.M., van Haren N.E., Schnack H.G., Kahn R.S., Hulshoff Pol H.E. Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies // Hum. Brain Mapp. — 2012. — Vol. 33, № 8. — P. 1987–2002.

29. Hensch T.K. Critical period plasticity in local cortical circuits // Nat. Rev. Neurosci. — 2005. — Vol. 6. — P. 877–888.

30. Himanen L., Portin R., Isoniemi H., Helenius H., Kurki T., Tenovuo O. Longitudinal cognitive changes in traumatic brain injury: a 30-year follow-up study // Neurology. — 2006. — Vol. 66, № 2. — P. 187–192.

31. Hove M.J., Suzuki K., Uchitomi H. et al. Interactive Rhythmic Auditory Stimulation Reinstates Natural 1/f Timing in Gait of Parkinson’s. Patients // PLoS One. — 2012. — Vol. 7, N3. — P. e32600.

32. Huang T.L., Charyton C. A comprehensive review of the psychological effects of brainwave entrainment // Altern. Ter. Health Med. — 2008. — Vol. 14, № 5. — P. 38-50.

33. Hyder A.A., Wunderlich C.A., Puvanachandra P., Gururaj G., Kobusingye O.C. Te impact of traumatic brain injuries: a global perspective // NeuroRehabilit ation.—2007.—Vol. 22, №5.—P. 341–353.

34. Hylin M.J., Kerr A.L., Holden R. Understanding the Mechanisms of Recovery and/or Compensation following Injury // Neural Plast. — 2017. — Vol. 2017:7125057.

35. Jin K., Simpkins J.W., Ji X., Leis M., Stambler I. Te Critical Need to Promote Research of Aging and Aging-related Diseases to Improve Health and Longevity of the Elderly Population // Aging and Disease. — 2015. — Vol. 6, № 1. — P. 1-5.

36. Kennedy B.K., Berger S.L., Brunet A. et al. Geroscience: linking aging to chronic disease // Cell. — 2014 — Vol. 159, № 4. — P. 709-713.

37. Kimberley T.J., Samargia S., Moore L.G., Shakakya J.K., Lang C.E. Comparison of amounts and types of practice during rehabilitation for traumatic brain injury and stroke // J. Rehabil. Res. Dev. — 2010, — Vol. 47. — P. 851-862.

38. Kitzbichler M.G., Smith M.L., Christensen S.R., Bullmore E. Broadband Criticality of Human Brain Network Synchronization // PLoS Comput. Biol. — 2009. — Vol. 5, № 3. — P. e1000314.

39. Krawinkel L.A., Engel A.K., Hummel F.C. Modulating pathological oscillations by rhythmic non-invasive brain stimulation—a therapeutic concept? // Front. Syst. Neurosci.—2015.—Vol. 9; Art 33.

40. Lane J.D., Kasian S.J., Owens J.E., Marsh G.R. Binaural auditory beats affect vigilance performance and mood // Physiol. Behav. — 1998. — Vol. 63. — P. 249–252.

41. Lee S.H., Dan Y. Neuromodulation of brain states // Neuron. — 2012; 76:209–222.

42. León-Carrión J., MacHuca-Murga F., Solís-Marcos I., León-Domínguez U., Domínguez-Morales M.D.R. Te sooner patients begin neurorehabilitation, the better their functional outcome // Brain Inj. — 2013. — Vol. 27, № 10. — P. 1119–1123.

43. Mahncke H.W., Bronstone A., Merzenich M.M. Brain plasticity and functional losses in the aged: scientifc bases for a novel intervention // Prog. Brain Res. — 2006. — Vol. 157. — Р. 81–109.

44. Mahncke H.W., Connor B.B., Appelman J. et al. Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study // Proc. Natl. Acad. Sci. U.S.A.—2006.—Vol. 103, №33.—P. 12523–12528.

45. Manor B., Lipsitz L.A. Physiologic complexity and aging: implications for physical function and rehabilitation // Prog. Neuropsychopharmacol. Biol. Psychiatry. — 2013. — Vol. 45. — P. 287-293.

46. Morrison J.H., Baxter M.G. Te ageing cortical synapse: hallmarks and implications for cognitive decline // Nat. Rev. Neurosci. — 2012. — Vol. 13, № 4. — P. 240–250.

47. Muldoon S.F., Pasqualetti F., Gu S. et al. StimulationBased Control of Dynamic Brain Networks // PLoS Comput. Biol. — 2016. — Vol. 12, № 9: e1005076.

48. Pannese E. Morphological changes in nerve cells during normal aging // Brain Struct. Funct. — 2011. — Vol. 216, № 2. — P. 85–89.

49. Pascual-Leone A., Freitas C., Oberman L. et al. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI // Brain Topogr. — 2011. — Vol. 24. — P. 302-315.

50. Peng C.K., Mietus J.E., Liu, Y. et al. Quantifying fractal dynamics of human respiration: age and gender effects // Ann. Biomed. Eng. — 2002. — Vol. 30. — P. 683-692..

51. Perna R., Perkey H. Internal memory rehabilitation strategies in the context of post-acute brain injury: A pilot study // Int. J. Neurorehabilitation. — 2016. — Vol. 3:199.

52. Rampon C., Jiang C.H., Dong H. et al. Effects of environmental enrichment on gene expression in the brain // Proc. Natl. Acad. Sci. U.S.A. — 2000. — Vol. 97, № 23. — P. 12880–12884.

53. Reedijk S.A., Bolders A., Hommel B. Te impact of binaural beats on creativity // Front. Hum. Neurosci. — 2013. — Vol. 7. Article 786.

54. Rhea C.K., Kiefer A.W., Wittstein M.W. et al. Fractal gait patterns are retained afer entrainment to a fractal stimulus // PLoS One. — 2014. — Vol. 9, № 9: e106755

55. Salthouse T.A. Selective review of cognitive aging // J. Int. Neuropsychol. Soc. — 2010. — Vol. 16, № 5. — P. 754–760.

56. Serruyaa M.D., Kahana M.J. Techniques and devices to restore cognition // Behav. Brain Res. — 2008. — Vol. 192, № 2, — P. 149-65.

57. Shors T.J., Olson R.L., Bates M.E., Selby E.A., Alderman B.L. Mental and Physical (MAP) Training: A neurogenesis-inspired intervention that enhances health in humans // Neurobiol. Learn. Mem. — 2014. — Vol. 11. — P. 3–9.

58. Spreij L.A., Visser-Meily J.M., van Heugten C.M., Nijboer T.C. Novel insights into the rehabilitation of memory post acquired brain injury: a systematic review // Front. Hum. Neurosci. 2014. — Vol. 8. — P. 993.

59. Srinivasan R., Bibi F.A., Nunez P.L. Steady-state visual evoked potentials: distributed local sources and wave-like dynamics are sensitive to flicker frequency // Brain Topogr. — 2006. — Vol. 18, № 3. — P. 167-187.

60. Steiner B., Zurborg S., Hörster H., Fabel K., Kempermann G. Differential 24h responsiveness of Prox1-expressing precursor cells in adult hippocampal neurogenesis to physical activity, environmental enrichment, and kainic acidinduced seizures // Neuroscience. — 2008. — Vol. 154, № 2. — P. 521–529.

61. Tut G., Veniero D., Romei V. et al. Rhythmic TMS causes local entrainment of natural oscillatory signatures // Curr. Biol.— 2011. — Vol. 21. — P. 1176-1185.

62. Till C, Colella B, Verwegen J, Green RE. Postrecovery cognitive decline in adults with traumatic brain injury // Arch. Phys. Med. Rehabil. — 2008. — Vol. 89, № 12. — S25–34.

63. Tomaszczyk J.C., Green N.L., Frasca D., Colella B., Turner G.R., Christensen B.K., Green R.E.A. Negative neuroplasticity in chronic traumatic brain injury and implications for neurorehabilitation // Neuropsychol. Rev.—2014.—Vol. 24, № 4.—P. 409–427.

64. Wallace C.S., Withers G.S., Farnand A., Lobingier B.T., McCleery E.J. Evidence that angiogenesis lags behind neuron and astrocyte growth in experience-dependent plasticity // Dev. Psychobiol. — 2011. — Vol. 53, № 5. — P. 435–442.

65. Williams J., Ramaswamy D., Oulhaj A. 10 Hz flicker improves recognition memory in older people // BMC Neurosci. — 2006. — Vol. 7, № 5. — P. 21.

66. World Population Ageing 2015. United Nations, Department of Economic and Social Affairs, Population Division (2015). (ST/ESA/SER.A/390).

67. Zaehle T., Rach S., Herrmann C.S. Transcranial alternating current stimulation enhances individual alpha activity in human EEG // PLoS One. — 2010. — Vol. 5:e13766.

68. Zueva M.V. Dynamic fractal flickering as a tool in research of non- linear dynamics of the evoked activity of a visual system and the possible basis for new diagnostics and treatment of neurodegenerative diseases of the retina and brain // World Appl. Sci. J. — 2013. — Vol. 427. — P. 462-468.

69. Zueva M.V. Fractality of sensations and the brain health: the theory linking neurodegenerative disorder with distortion of spatial and temporal scale-invariance and fractal complexity of the visible world // Front. Aging Neurosci. — 2015. — Vol. 7:135.

70. Zueva M.V. Nonlinear stimulation technologies to enhance the efciency of the therapy of brain disorders and efcacy of cognitive training // Int. J. Adv. Res. — 2017. — Vol. 5, № 8. — P. 250-269.


Рецензия

Для цитирования:


Зуева М.В. Перспективность применения нелинейной стимуляционной терапии в лечении травматических повреждений головного мозга и поддержании когнитивных функций у пожилых лиц. Обозрение психиатрии и медицинской психологии имени В.М.Бехтерева. 2018;(2):36-43. https://doi.org/10.31363/2313-7053-2018-2-36-43

For citation:


Zueva M.V. Perspective of application of nonlinear stimulation therapy in the treatment of traumatic brain injuries and maintenance of cognitive functions in the elderly. V.M. BEKHTEREV REVIEW OF PSYCHIATRY AND MEDICAL PSYCHOLOGY. 2018;(2):36-43. (In Russ.) https://doi.org/10.31363/2313-7053-2018-2-36-43

Просмотров: 584


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0.


ISSN 2313-7053 (Print)
ISSN 2713-055X (Online)