Preview

V.M. BEKHTEREV REVIEW OF PSYCHIATRY AND MEDICAL PSYCHOLOGY

Advanced search

Analog and digital systems and high-performance solutions in problems of brain research and modeling

Abstract

This paper is devoted to some of the infrastructural problems of neuroinformatics in the context of existing analog-to-digital systems and high-performance solutions. We surveyed results and analyzed some of the existing methods required in various experiments. Special attention was devoted to the problem of the human brain simulation, based on a combination of digital and analog subsystems. Paper shows various approaches to modeling of interactions between brain neurons and explores different algorithms. We consider different applications of cloud solutions to neuroinformatics problems. Paper highlights areas of particular interest such as working with external storage, distributed data processing and visualization of acquired results. For each of them we survey existing options for creating cloud-based distributed computing solutions that can solve important challenges faced by researchers in their work.

About the Authors

N. I. Ananyeva
ФГБУ «Санкт-Петербургский научно-исследовательский психоневрологический институт им. В.М. Бехтерева» МЗ РФ
Russian Federation


A. V. Bogdanov
Санкт-Петербургский государственный университет
Russian Federation


D. E. Gushchanskiy
Санкт-Петербургский государственный университет
Russian Federation


A. B. Degtyarev
Санкт-Петербургский государственный университет
Russian Federation


N. M. Zalutskaya
ФГБУ «Санкт-Петербургский научно-исследовательский психоневрологический институт им. В.М. Бехтерева» МЗ РФ
Russian Federation


K. A. Lysov
Санкт-Петербургский государственный университет
Russian Federation


N. G. Neznanov
ФГБУ «Санкт-Петербургский научно-исследовательский психоневрологический институт им. В.М. Бехтерева» МЗ РФ
Russian Federation


O. O. Iakushkin
Санкт-Петербургский государственный университет
Russian Federation


References

1. Broad Agency Announcement. Systems of Neuromorphic Adaptive Plastic Scalable Electronics. DARPA-BAA 08-28. 9 April 2008. - https:// www.fbo.gov/download/0b6/0b62b2149395d4bd8a 28dff1b9046944/BAA08-28.doc

2. The Human Brain Project. A Report to the European Commission. - https://ec.europa.eu/re-search/participants/portal/doc/call/h2020/fetflag-1-2014/1595110-6pilots-hbp-publicreport_en.pdf

3. Yasuhiro Mochizuki, Shigeru Shinomoto. Analog and digital codes in the brain. Department of Physics, Kyoto University, Kyoto 606-8502, Japan. November 19, 2013. - http://arxiv.org/ pdf/1311.4035v1.pdf

4. Tayfun Gokmen, Yurii Vlasov. Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices. IBM T. J. Watson Research Center. - https://arxiv.org/ftp/arxiv/pa-pers/1603/1603.07341.pdf

5. Mohlberg, H., Eickhoff, S.B., Schleicher, A., Zilles, K. and Amunts, K. A new processing pipeline and release of cytoarchitectonic probabilistic maps-Ju-Brain. - 2012.

6. Antoniu, G., Costan, A., Mota, B.D., Thirion, B. and Tudoran, R. A-brain: using the cloud to understand the impact of genetic variability on the brain. - ERCIM News, 89. - 2012. - Р 21-22.

7. Watson, P., Lord, P., Gibson, F., Periorellis, P. and Pitsilis, G. Cloud Computing for e-Science with CARMEN. In 2nd Iberian Grid Infrastructure Conference Proceedings - 2008. - May. - Р 3-14.

8. D’Haese, P.F., Konrad, P.E., Pallavaram, S., Li, R., Prassad, P., Rodriguez, W. and Dawant, B.M. CranialCloud: a cloud-based architecture to support trans-institutional collaborative efforts in neurodegenerative disorders. - International journal of computer assisted radiology and surgery. - 2015. - Vol.10. - P. 815-823.

9. Wang, Yida, Michael J. Anderson, Jonathan D. Cohen, Alexander Heinecke, Kai Li, Nadathur Satish, Narayanan Sundaram, Nicholas B. Turk-Browne, and Theodore L. Willke. «Full correlation matrix analysis of fMRI data on Intel* Xeon Phi™ coprocessors.» In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. - ACM. - 2015. - p. 23.

10. Богданов А.В., Дегтярев А.Б. Суперкомпьютинг без суперкомпьютеров: что мы можем, а что не можем? Вычислительные технологии в естественных науках. Методы суперкомпьютерного моделирования. Сборник трудов. Сер. «Механика, управление и информатика» под редакцией Р.Р. Назирова, Л.Н. Щура. - Институт космических исследований Российской академии наук. - Москва. - 2015. - С. 61-77.

11. Bogdanov, A., Degtyarev, A. and Korkhov, V. New Approach to the Simulation of Complex Systems. In EPJ Web of Conferences. - 2016. - Vol. 108. - Р. 01002.

12. Jinzhou, Yang, He Jin, Zhang Kai, and Wang Zhi-jun. «Discussion on private cloud PaaS construction of large scale enterprise.» In 2016 IEEE International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). - 2016. - Р. 273-278.

13. V. Korkhov, I. Gankevich, A. Degtyarev, A. Bogdanov, V. Gaiduchok, N. Ahmed, A. Cubahiro. “Experience in Building Virtual Private Supercomputer”, Proceedings of 13. International Conference on Computer Science and Information Technologies (CSIT). - 2015. - Р. 220-223. - ISBN 978-5-80800797-0

14. Swanson, L.W. and Lichtman, J.W. From Cajal to Connectome and Beyond. - Annual Review of Neuroscience. - 2016. - Vol. 39.

15. Tomassy, G.S., Berger, D.R., Chen, H.H., Kasthuri, N., Hayworth, K.J., Vercelli, A., Seung, H.S., Lichtman, J.W. and Arlotta, P. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. - Science. - 2014. - Vol. 344. - P. 319-324.

16. Lichtman, J.W. and Denk, W. The big and the small: challenges of imaging the brain’s circuits. - Science. - 2011. - Vol. 334. - P. 618-623.

17. Lichtman, J.W., Pfister, H. and Shavit, N. The big data challenges of connectomics. - Nature neuroscience. - 2014. - Vol.17. - P. 1448-1454.

18. Han, Y. Cloud storage for digital preservation: optimal uses of Amazon S3 and Glacier. - Library Hi Tech. - 2015. - Vol. 33. - P. 261-271.

19. Miller, J.A., Ding, S.L., Sunkin, S.M., Smith, K.A., Ng, L., Szafer, A., Ebbert, A., Riley, Z.L., Royall, J.J., Aiona, K. and Arnold, J.M. Transcriptional landscape of the prenatal human brain. - Nature. - 2014. - Vol.508. - P. 199-206.

20. Prieto, A., Prieto, B., Ortigosa, E.M., Ros, E., Pelayo, F., Ortega, J. and Rojas, I. Neural networks: An overview of early research, current frameworks and new challenges. - Neurocomputing. - 2016.

21. Neven, H., Denchev, V.S., Rose, G. and Mac-ready, W.G. QBoost: Large Scale Classifier Training with Adiabatic Quantum Optimization. - In ACML. - 2012. - P. 333-348.

22. Singh, H. and Sachdev, A., 2014, February. The quantum way of cloud computing. In Optimization, Reliabilty, and Information Technology (ICROIT). - International Conference on. - 2014. - P. 397-400. Ieee.

23. Cunningham, J.P. Analyzing neural data at huge scale. - Nature methods. - 2014. - Vol.11. - P. 911-912.

24. Leon, P.S., Knock, S.A., Woodman, M.M., Domide, L., Mersmann, J., McIntosh, A.R. and Jirsa, V. The Virtual Brain: a simulator of primate brain network dynamics. Information-based methods for neuroimaging: analyzing structure, function and dynamics. - 2015. - P. 10.


Review

For citations:


Ananyeva N.I., Bogdanov A.V., Gushchanskiy D.E., Degtyarev A.B., Zalutskaya N.M., Lysov K.A., Neznanov N.G., Iakushkin O.O. Analog and digital systems and high-performance solutions in problems of brain research and modeling. V.M. BEKHTEREV REVIEW OF PSYCHIATRY AND MEDICAL PSYCHOLOGY. 2016;(3):16-21. (In Russ.)

Views: 401


ISSN 2313-7053 (Print)
ISSN 2713-055X (Online)